What is the Bitcoin Block Size Debate and Why Does it Matter?

Why i’m bullish on Zilliqa (long read)

Edit: TL;DR added in the comments
 
Hey all, I've been researching coins since 2017 and have gone through 100s of them in the last 3 years. I got introduced to blockchain via Bitcoin of course, analyzed Ethereum thereafter and from that moment I have a keen interest in smart contact platforms. I’m passionate about Ethereum but I find Zilliqa to have a better risk-reward ratio. Especially because Zilliqa has found an elegant balance between being secure, decentralized and scalable in my opinion.
 
Below I post my analysis of why from all the coins I went through I’m most bullish on Zilliqa (yes I went through Tezos, EOS, NEO, VeChain, Harmony, Algorand, Cardano etc.). Note that this is not investment advice and although it's a thorough analysis there is obviously some bias involved. Looking forward to what you all think!
 
Fun fact: the name Zilliqa is a play on ‘silica’ silicon dioxide which means “Silicon for the high-throughput consensus computer.”
 
This post is divided into (i) Technology, (ii) Business & Partnerships, and (iii) Marketing & Community. I’ve tried to make the technology part readable for a broad audience. If you’ve ever tried understanding the inner workings of Bitcoin and Ethereum you should be able to grasp most parts. Otherwise, just skim through and once you are zoning out head to the next part.
 
Technology and some more:
 
Introduction
 
The technology is one of the main reasons why I’m so bullish on Zilliqa. First thing you see on their website is: “Zilliqa is a high-performance, high-security blockchain platform for enterprises and next-generation applications.” These are some bold statements.
 
Before we deep dive into the technology let’s take a step back in time first as they have quite the history. The initial research paper from which Zilliqa originated dates back to August 2016: Elastico: A Secure Sharding Protocol For Open Blockchains where Loi Luu (Kyber Network) is one of the co-authors. Other ideas that led to the development of what Zilliqa has become today are: Bitcoin-NG, collective signing CoSi, ByzCoin and Omniledger.
 
The technical white paper was made public in August 2017 and since then they have achieved everything stated in the white paper and also created their own open source intermediate level smart contract language called Scilla (functional programming language similar to OCaml) too.
 
Mainnet is live since the end of January 2019 with daily transaction rates growing continuously. About a week ago mainnet reached 5 million transactions, 500.000+ addresses in total along with 2400 nodes keeping the network decentralized and secure. Circulating supply is nearing 11 billion and currently only mining rewards are left. The maximum supply is 21 billion with annual inflation being 7.13% currently and will only decrease with time.
 
Zilliqa realized early on that the usage of public cryptocurrencies and smart contracts were increasing but decentralized, secure, and scalable alternatives were lacking in the crypto space. They proposed to apply sharding onto a public smart contract blockchain where the transaction rate increases almost linear with the increase in the amount of nodes. More nodes = higher transaction throughput and increased decentralization. Sharding comes in many forms and Zilliqa uses network-, transaction- and computational sharding. Network sharding opens up the possibility of using transaction- and computational sharding on top. Zilliqa does not use state sharding for now. We’ll come back to this later.
 
Before we continue dissecting how Zilliqa achieves such from a technological standpoint it’s good to keep in mind that a blockchain being decentralised and secure and scalable is still one of the main hurdles in allowing widespread usage of decentralised networks. In my opinion this needs to be solved first before blockchains can get to the point where they can create and add large scale value. So I invite you to read the next section to grasp the underlying fundamentals. Because after all these premises need to be true otherwise there isn’t a fundamental case to be bullish on Zilliqa, right?
 
Down the rabbit hole
 
How have they achieved this? Let’s define the basics first: key players on Zilliqa are the users and the miners. A user is anybody who uses the blockchain to transfer funds or run smart contracts. Miners are the (shard) nodes in the network who run the consensus protocol and get rewarded for their service in Zillings (ZIL). The mining network is divided into several smaller networks called shards, which is also referred to as ‘network sharding’. Miners subsequently are randomly assigned to a shard by another set of miners called DS (Directory Service) nodes. The regular shards process transactions and the outputs of these shards are eventually combined by the DS shard as they reach consensus on the final state. More on how these DS shards reach consensus (via pBFT) will be explained later on.
 
The Zilliqa network produces two types of blocks: DS blocks and Tx blocks. One DS Block consists of 100 Tx Blocks. And as previously mentioned there are two types of nodes concerned with reaching consensus: shard nodes and DS nodes. Becoming a shard node or DS node is being defined by the result of a PoW cycle (Ethash) at the beginning of the DS Block. All candidate mining nodes compete with each other and run the PoW (Proof-of-Work) cycle for 60 seconds and the submissions achieving the highest difficulty will be allowed on the network. And to put it in perspective: the average difficulty for one DS node is ~ 2 Th/s equaling 2.000.000 Mh/s or 55 thousand+ GeForce GTX 1070 / 8 GB GPUs at 35.4 Mh/s. Each DS Block 10 new DS nodes are allowed. And a shard node needs to provide around 8.53 GH/s currently (around 240 GTX 1070s). Dual mining ETH/ETC and ZIL is possible and can be done via mining software such as Phoenix and Claymore. There are pools and if you have large amounts of hashing power (Ethash) available you could mine solo.
 
The PoW cycle of 60 seconds is a peak performance and acts as an entry ticket to the network. The entry ticket is called a sybil resistance mechanism and makes it incredibly hard for adversaries to spawn lots of identities and manipulate the network with these identities. And after every 100 Tx Blocks which corresponds to roughly 1,5 hour this PoW process repeats. In between these 1,5 hour, no PoW needs to be done meaning Zilliqa’s energy consumption to keep the network secure is low. For more detailed information on how mining works click here.
Okay, hats off to you. You have made it this far. Before we go any deeper down the rabbit hole we first must understand why Zilliqa goes through all of the above technicalities and understand a bit more what a blockchain on a more fundamental level is. Because the core of Zilliqa’s consensus protocol relies on the usage of pBFT (practical Byzantine Fault Tolerance) we need to know more about state machines and their function. Navigate to Viewblock, a Zilliqa block explorer, and just come back to this article. We will use this site to navigate through a few concepts.
 
We have established that Zilliqa is a public and distributed blockchain. Meaning that everyone with an internet connection can send ZILs, trigger smart contracts, etc. and there is no central authority who fully controls the network. Zilliqa and other public and distributed blockchains (like Bitcoin and Ethereum) can also be defined as state machines.
 
Taking the liberty of paraphrasing examples and definitions given by Samuel Brooks’ medium article, he describes the definition of a blockchain (like Zilliqa) as: “A peer-to-peer, append-only datastore that uses consensus to synchronize cryptographically-secure data”.
 
Next, he states that: "blockchains are fundamentally systems for managing valid state transitions”. For some more context, I recommend reading the whole medium article to get a better grasp of the definitions and understanding of state machines. Nevertheless, let’s try to simplify and compile it into a single paragraph. Take traffic lights as an example: all its states (red, amber, and green) are predefined, all possible outcomes are known and it doesn’t matter if you encounter the traffic light today or tomorrow. It will still behave the same. Managing the states of a traffic light can be done by triggering a sensor on the road or pushing a button resulting in one traffic lights’ state going from green to red (via amber) and another light from red to green.
 
With public blockchains like Zilliqa, this isn’t so straightforward and simple. It started with block #1 almost 1,5 years ago and every 45 seconds or so a new block linked to the previous block is being added. Resulting in a chain of blocks with transactions in it that everyone can verify from block #1 to the current #647.000+ block. The state is ever changing and the states it can find itself in are infinite. And while the traffic light might work together in tandem with various other traffic lights, it’s rather insignificant comparing it to a public blockchain. Because Zilliqa consists of 2400 nodes who need to work together to achieve consensus on what the latest valid state is while some of these nodes may have latency or broadcast issues, drop offline or are deliberately trying to attack the network, etc.
 
Now go back to the Viewblock page take a look at the amount of transaction, addresses, block and DS height and then hit refresh. Obviously as expected you see new incremented values on one or all parameters. And how did the Zilliqa blockchain manage to transition from a previous valid state to the latest valid state? By using pBFT to reach consensus on the latest valid state.
 
After having obtained the entry ticket, miners execute pBFT to reach consensus on the ever-changing state of the blockchain. pBFT requires a series of network communication between nodes, and as such there is no GPU involved (but CPU). Resulting in the total energy consumed to keep the blockchain secure, decentralized and scalable being low.
 
pBFT stands for practical Byzantine Fault Tolerance and is an optimization on the Byzantine Fault Tolerant algorithm. To quote Blockonomi: “In the context of distributed systems, Byzantine Fault Tolerance is the ability of a distributed computer network to function as desired and correctly reach a sufficient consensus despite malicious components (nodes) of the system failing or propagating incorrect information to other peers.” Zilliqa is such a distributed computer network and depends on the honesty of the nodes (shard and DS) to reach consensus and to continuously update the state with the latest block. If pBFT is a new term for you I can highly recommend the Blockonomi article.
 
The idea of pBFT was introduced in 1999 - one of the authors even won a Turing award for it - and it is well researched and applied in various blockchains and distributed systems nowadays. If you want more advanced information than the Blockonomi link provides click here. And if you’re in between Blockonomi and the University of Singapore read the Zilliqa Design Story Part 2 dating from October 2017.
Quoting from the Zilliqa tech whitepaper: “pBFT relies upon a correct leader (which is randomly selected) to begin each phase and proceed when the sufficient majority exists. In case the leader is byzantine it can stall the entire consensus protocol. To address this challenge, pBFT offers a view change protocol to replace the byzantine leader with another one.”
 
pBFT can tolerate ⅓ of the nodes being dishonest (offline counts as Byzantine = dishonest) and the consensus protocol will function without stalling or hiccups. Once there are more than ⅓ of dishonest nodes but no more than ⅔ the network will be stalled and a view change will be triggered to elect a new DS leader. Only when more than ⅔ of the nodes are dishonest (66%) double-spend attacks become possible.
 
If the network stalls no transactions can be processed and one has to wait until a new honest leader has been elected. When the mainnet was just launched and in its early phases, view changes happened regularly. As of today the last stalling of the network - and view change being triggered - was at the end of October 2019.
 
Another benefit of using pBFT for consensus besides low energy is the immediate finality it provides. Once your transaction is included in a block and the block is added to the chain it’s done. Lastly, take a look at this article where three types of finality are being defined: probabilistic, absolute and economic finality. Zilliqa falls under the absolute finality (just like Tendermint for example). Although lengthy already we skipped through some of the inner workings from Zilliqa’s consensus: read the Zilliqa Design Story Part 3 and you will be close to having a complete picture on it. Enough about PoW, sybil resistance mechanism, pBFT, etc. Another thing we haven’t looked at yet is the amount of decentralization.
 
Decentralisation
 
Currently, there are four shards, each one of them consisting of 600 nodes. 1 shard with 600 so-called DS nodes (Directory Service - they need to achieve a higher difficulty than shard nodes) and 1800 shard nodes of which 250 are shard guards (centralized nodes controlled by the team). The amount of shard guards has been steadily declining from 1200 in January 2019 to 250 as of May 2020. On the Viewblock statistics, you can see that many of the nodes are being located in the US but those are only the (CPU parts of the) shard nodes who perform pBFT. There is no data from where the PoW sources are coming. And when the Zilliqa blockchain starts reaching its transaction capacity limit, a network upgrade needs to be executed to lift the current cap of maximum 2400 nodes to allow more nodes and formation of more shards which will allow to network to keep on scaling according to demand.
Besides shard nodes there are also seed nodes. The main role of seed nodes is to serve as direct access points (for end-users and clients) to the core Zilliqa network that validates transactions. Seed nodes consolidate transaction requests and forward these to the lookup nodes (another type of nodes) for distribution to the shards in the network. Seed nodes also maintain the entire transaction history and the global state of the blockchain which is needed to provide services such as block explorers. Seed nodes in the Zilliqa network are comparable to Infura on Ethereum.
 
The seed nodes were first only operated by Zilliqa themselves, exchanges and Viewblock. Operators of seed nodes like exchanges had no incentive to open them for the greater public. They were centralised at first. Decentralisation at the seed nodes level has been steadily rolled out since March 2020 ( Zilliqa Improvement Proposal 3 ). Currently the amount of seed nodes is being increased, they are public-facing and at the same time PoS is applied to incentivize seed node operators and make it possible for ZIL holders to stake and earn passive yields. Important distinction: seed nodes are not involved with consensus! That is still PoW as entry ticket and pBFT for the actual consensus.
 
5% of the block rewards are being assigned to seed nodes (from the beginning in 2019) and those are being used to pay out ZIL stakers. The 5% block rewards with an annual yield of 10.03% translate to roughly 610 MM ZILs in total that can be staked. Exchanges use the custodial variant of staking and wallets like Moonlet will use the non-custodial version (starting in Q3 2020). Staking is being done by sending ZILs to a smart contract created by Zilliqa and audited by Quantstamp.
 
With a high amount of DS; shard nodes and seed nodes becoming more decentralized too, Zilliqa qualifies for the label of decentralized in my opinion.
 
Smart contracts
 
Let me start by saying I’m not a developer and my programming skills are quite limited. So I‘m taking the ELI5 route (maybe 12) but if you are familiar with Javascript, Solidity or specifically OCaml please head straight to Scilla - read the docs to get a good initial grasp of how Zilliqa’s smart contract language Scilla works and if you ask yourself “why another programming language?” check this article. And if you want to play around with some sample contracts in an IDE click here. The faucet can be found here. And more information on architecture, dapp development and API can be found on the Developer Portal.
If you are more into listening and watching: check this recent webinar explaining Zilliqa and Scilla. Link is time-stamped so you’ll start right away with a platform introduction, roadmap 2020 and afterwards a proper Scilla introduction.
 
Generalized: programming languages can be divided into being ‘object-oriented’ or ‘functional’. Here is an ELI5 given by software development academy: * “all programs have two basic components, data – what the program knows – and behavior – what the program can do with that data. So object-oriented programming states that combining data and related behaviors in one place, is called “object”, which makes it easier to understand how a particular program works. On the other hand, functional programming argues that data and behavior are different things and should be separated to ensure their clarity.” *
 
Scilla is on the functional side and shares similarities with OCaml: OCaml is a general-purpose programming language with an emphasis on expressiveness and safety. It has an advanced type system that helps catch your mistakes without getting in your way. It's used in environments where a single mistake can cost millions and speed matters, is supported by an active community, and has a rich set of libraries and development tools. For all its power, OCaml is also pretty simple, which is one reason it's often used as a teaching language.
 
Scilla is blockchain agnostic, can be implemented onto other blockchains as well, is recognized by academics and won a so-called Distinguished Artifact Award award at the end of last year.
 
One of the reasons why the Zilliqa team decided to create their own programming language focused on preventing smart contract vulnerabilities is that adding logic on a blockchain, programming, means that you cannot afford to make mistakes. Otherwise, it could cost you. It’s all great and fun blockchains being immutable but updating your code because you found a bug isn’t the same as with a regular web application for example. And with smart contracts, it inherently involves cryptocurrencies in some form thus value.
 
Another difference with programming languages on a blockchain is gas. Every transaction you do on a smart contract platform like Zilliqa or Ethereum costs gas. With gas you basically pay for computational costs. Sending a ZIL from address A to address B costs 0.001 ZIL currently. Smart contracts are more complex, often involve various functions and require more gas (if gas is a new concept click here ).
 
So with Scilla, similar to Solidity, you need to make sure that “every function in your smart contract will run as expected without hitting gas limits. An improper resource analysis may lead to situations where funds may get stuck simply because a part of the smart contract code cannot be executed due to gas limits. Such constraints are not present in traditional software systems”. Scilla design story part 1
 
Some examples of smart contract issues you’d want to avoid are: leaking funds, ‘unexpected changes to critical state variables’ (example: someone other than you setting his or her address as the owner of the smart contract after creation) or simply killing a contract.
 
Scilla also allows for formal verification. Wikipedia to the rescue: In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.
 
Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
 
Scilla is being developed hand-in-hand with formalization of its semantics and its embedding into the Coq proof assistant — a state-of-the art tool for mechanized proofs about properties of programs.”
 
Simply put, with Scilla and accompanying tooling developers can be mathematically sure and proof that the smart contract they’ve written does what he or she intends it to do.
 
Smart contract on a sharded environment and state sharding
 
There is one more topic I’d like to touch on: smart contract execution in a sharded environment (and what is the effect of state sharding). This is a complex topic. I’m not able to explain it any easier than what is posted here. But I will try to compress the post into something easy to digest.
 
Earlier on we have established that Zilliqa can process transactions in parallel due to network sharding. This is where the linear scalability comes from. We can define simple transactions: a transaction from address A to B (Category 1), a transaction where a user interacts with one smart contract (Category 2) and the most complex ones where triggering a transaction results in multiple smart contracts being involved (Category 3). The shards are able to process transactions on their own without interference of the other shards. With Category 1 transactions that is doable, with Category 2 transactions sometimes if that address is in the same shard as the smart contract but with Category 3 you definitely need communication between the shards. Solving that requires to make a set of communication rules the protocol needs to follow in order to process all transactions in a generalised fashion.
 
And this is where the downsides of state sharding comes in currently. All shards in Zilliqa have access to the complete state. Yes the state size (0.1 GB at the moment) grows and all of the nodes need to store it but it also means that they don’t need to shop around for information available on other shards. Requiring more communication and adding more complexity. Computer science knowledge and/or developer knowledge required links if you want to dig further: Scilla - language grammar Scilla - Foundations for Verifiable Decentralised Computations on a Blockchain Gas Accounting NUS x Zilliqa: Smart contract language workshop
 
Easier to follow links on programming Scilla https://learnscilla.com/home Ivan on Tech
 
Roadmap / Zilliqa 2.0
 
There is no strict defined roadmap but here are topics being worked on. And via the Zilliqa website there is also more information on the projects they are working on.
 
Business & Partnerships
 
It’s not only technology in which Zilliqa seems to be excelling as their ecosystem has been expanding and starting to grow rapidly. The project is on a mission to provide OpenFinance (OpFi) to the world and Singapore is the right place to be due to its progressive regulations and futuristic thinking. Singapore has taken a proactive approach towards cryptocurrencies by introducing the Payment Services Act 2019 (PS Act). Among other things, the PS Act will regulate intermediaries dealing with certain cryptocurrencies, with a particular focus on consumer protection and anti-money laundering. It will also provide a stable regulatory licensing and operating framework for cryptocurrency entities, effectively covering all crypto businesses and exchanges based in Singapore. According to PWC 82% of the surveyed executives in Singapore reported blockchain initiatives underway and 13% of them have already brought the initiatives live to the market. There is also an increasing list of organizations that are starting to provide digital payment services. Moreover, Singaporean blockchain developers Building Cities Beyond has recently created an innovation $15 million grant to encourage development on its ecosystem. This all suggests that Singapore tries to position itself as (one of) the leading blockchain hubs in the world.
 
Zilliqa seems to already take advantage of this and recently helped launch Hg Exchange on their platform, together with financial institutions PhillipCapital, PrimePartners and Fundnel. Hg Exchange, which is now approved by the Monetary Authority of Singapore (MAS), uses smart contracts to represent digital assets. Through Hg Exchange financial institutions worldwide can use Zilliqa's safe-by-design smart contracts to enable the trading of private equities. For example, think of companies such as Grab, Airbnb, SpaceX that are not available for public trading right now. Hg Exchange will allow investors to buy shares of private companies & unicorns and capture their value before an IPO. Anquan, the main company behind Zilliqa, has also recently announced that they became a partner and shareholder in TEN31 Bank, which is a fully regulated bank allowing for tokenization of assets and is aiming to bridge the gap between conventional banking and the blockchain world. If STOs, the tokenization of assets, and equity trading will continue to increase, then Zilliqa’s public blockchain would be the ideal candidate due to its strategic positioning, partnerships, regulatory compliance and the technology that is being built on top of it.
 
What is also very encouraging is their focus on banking the un(der)banked. They are launching a stablecoin basket starting with XSGD. As many of you know, stablecoins are currently mostly used for trading. However, Zilliqa is actively trying to broaden the use case of stablecoins. I recommend everybody to read this text that Amrit Kumar wrote (one of the co-founders). These stablecoins will be integrated in the traditional markets and bridge the gap between the crypto world and the traditional world. This could potentially revolutionize and legitimise the crypto space if retailers and companies will for example start to use stablecoins for payments or remittances, instead of it solely being used for trading.
 
Zilliqa also released their DeFi strategic roadmap (dating November 2019) which seems to be aligning well with their OpFi strategy. A non-custodial DEX is coming to Zilliqa made by Switcheo which allows cross-chain trading (atomic swaps) between ETH, EOS and ZIL based tokens. They also signed a Memorandum of Understanding for a (soon to be announced) USD stablecoin. And as Zilliqa is all about regulations and being compliant, I’m speculating on it to be a regulated USD stablecoin. Furthermore, XSGD is already created and visible on block explorer and XIDR (Indonesian Stablecoin) is also coming soon via StraitsX. Here also an overview of the Tech Stack for Financial Applications from September 2019. Further quoting Amrit Kumar on this:
 
There are two basic building blocks in DeFi/OpFi though: 1) stablecoins as you need a non-volatile currency to get access to this market and 2) a dex to be able to trade all these financial assets. The rest are built on top of these blocks.
 
So far, together with our partners and community, we have worked on developing these building blocks with XSGD as a stablecoin. We are working on bringing a USD-backed stablecoin as well. We will soon have a decentralised exchange developed by Switcheo. And with HGX going live, we are also venturing into the tokenization space. More to come in the future.”
 
Additionally, they also have this ZILHive initiative that injects capital into projects. There have been already 6 waves of various teams working on infrastructure, innovation and research, and they are not from ASEAN or Singapore only but global: see Grantees breakdown by country. Over 60 project teams from over 20 countries have contributed to Zilliqa's ecosystem. This includes individuals and teams developing wallets, explorers, developer toolkits, smart contract testing frameworks, dapps, etc. As some of you may know, Unstoppable Domains (UD) blew up when they launched on Zilliqa. UD aims to replace cryptocurrency addresses with a human-readable name and allows for uncensorable websites. Zilliqa will probably be the only one able to handle all these transactions onchain due to ability to scale and its resulting low fees which is why the UD team launched this on Zilliqa in the first place. Furthermore, Zilliqa also has a strong emphasis on security, compliance, and privacy, which is why they partnered with companies like Elliptic, ChainSecurity (part of PwC Switzerland), and Incognito. Their sister company Aqilliz (Zilliqa spelled backwards) focuses on revolutionizing the digital advertising space and is doing interesting things like using Zilliqa to track outdoor digital ads with companies like Foodpanda.
 
Zilliqa is listed on nearly all major exchanges, having several different fiat-gateways and recently have been added to Binance’s margin trading and futures trading with really good volume. They also have a very impressive team with good credentials and experience. They don't just have “tech people”. They have a mix of tech people, business people, marketeers, scientists, and more. Naturally, it's good to have a mix of people with different skill sets if you work in the crypto space.
 
Marketing & Community
 
Zilliqa has a very strong community. If you just follow their Twitter their engagement is much higher for a coin that has approximately 80k followers. They also have been ‘coin of the day’ by LunarCrush many times. LunarCrush tracks real-time cryptocurrency value and social data. According to their data, it seems Zilliqa has a more fundamental and deeper understanding of marketing and community engagement than almost all other coins. While almost all coins have been a bit frozen in the last months, Zilliqa seems to be on its own bull run. It was somewhere in the 100s a few months ago and is currently ranked #46 on CoinGecko. Their official Telegram also has over 20k people and is very active, and their community channel which is over 7k now is more active and larger than many other official channels. Their local communities also seem to be growing.
 
Moreover, their community started ‘Zillacracy’ together with the Zilliqa core team ( see www.zillacracy.com ). It’s a community-run initiative where people from all over the world are now helping with marketing and development on Zilliqa. Since its launch in February 2020 they have been doing a lot and will also run their own non-custodial seed node for staking. This seed node will also allow them to start generating revenue for them to become a self sustaining entity that could potentially scale up to become a decentralized company working in parallel with the Zilliqa core team. Comparing it to all the other smart contract platforms (e.g. Cardano, EOS, Tezos etc.) they don't seem to have started a similar initiative (correct me if I’m wrong though). This suggests in my opinion that these other smart contract platforms do not fully understand how to utilize the ‘power of the community’. This is something you cannot ‘buy with money’ and gives many projects in the space a disadvantage.
 
Zilliqa also released two social products called SocialPay and Zeeves. SocialPay allows users to earn ZILs while tweeting with a specific hashtag. They have recently used it in partnership with the Singapore Red Cross for a marketing campaign after their initial pilot program. It seems like a very valuable social product with a good use case. I can see a lot of traditional companies entering the space through this product, which they seem to suggest will happen. Tokenizing hashtags with smart contracts to get network effect is a very smart and innovative idea.
 
Regarding Zeeves, this is a tipping bot for Telegram. They already have 1000s of signups and they plan to keep upgrading it for more and more people to use it (e.g. they recently have added a quiz features). They also use it during AMAs to reward people in real-time. It’s a very smart approach to grow their communities and get familiar with ZIL. I can see this becoming very big on Telegram. This tool suggests, again, that the Zilliqa team has a deeper understanding of what the crypto space and community needs and is good at finding the right innovative tools to grow and scale.
 
To be honest, I haven’t covered everything (i’m also reaching the character limited haha). So many updates happening lately that it's hard to keep up, such as the International Monetary Fund mentioning Zilliqa in their report, custodial and non-custodial Staking, Binance Margin, Futures, Widget, entering the Indian market, and more. The Head of Marketing Colin Miles has also released this as an overview of what is coming next. And last but not least, Vitalik Buterin has been mentioning Zilliqa lately acknowledging Zilliqa and mentioning that both projects have a lot of room to grow. There is much more info of course and a good part of it has been served to you on a silver platter. I invite you to continue researching by yourself :-) And if you have any comments or questions please post here!
submitted by haveyouheardaboutit to CryptoCurrency [link] [comments]

Polkadot Launch AMA Recap

Polkadot Launch AMA Recap

The Polkadot Telegram AMA below took place on June 10, 2020

https://preview.redd.it/4ti681okap951.png?width=4920&format=png&auto=webp&s=e21f6a9a276d35bb9cdec59f46744f23c37966ef
AMA featured:
Dieter Fishbein, Ecosystem Development Lead, Web3 Foundation
Logan Saether, Technical Education, Web3 Foundation
Will Pankiewicz, Master of Validators, Parity Technologies
Moderated by Dan Reecer, Community and Growth, Polkadot & Kusama at Web3 Foundation

Transcription compiled by Theresa Boettger, Polkadot Ambassador:

Dieter Fishbein, Ecosystem Development Lead, Web3 Foundation

Dan: Hey everyone, thanks for joining us for the Polkadot Launch AMA. We have Dieter Fishbein (Head of Ecosystem Development, our business development team), Logan Saether (Technical Education), and Will Pankiewicz (Master of Validators) joining us today.
We had some great questions submitted in advance, and we’ll start by answering those and learning a bit about each of our guests. After we go through the pre-submitted questions, then we’ll open up the chat to live Q&A and the hosts will answer as many questions as they can.
We’ll start off with Dieter and ask him a set of some business-related questions.

Dieter could you introduce yourself, your background, and your role within the Polkadot ecosystem?

Dieter: I got my start in the space as a cryptography researcher at the University of Waterloo. This is where I first learned about Bitcoin and started following the space. I spent the next four years or so on the investment team for a large asset manager where I primarily focused on emerging markets. In 2017 I decided to take the plunge and join the space full-time. I worked at a small blockchain-focused VC fund and then joined the Polkadot team just over a year ago. My role at Polkadot is mainly focused on ensuring there is a vibrant community of projects building on our technology.

Q: Adoption of Polkadot of the important factors that all projects need to focus on to become more attractive to the industry. So, what is Polkadot's plan to gain more Adoption? [sic]

A (Dieter): Polkadot is fundamentally a developer-focused product so much of our adoption strategy is focused around making Polkadot an attractive product for developers. This has many elements. Right now the path for most developers to build on Polkadot is by creating a blockchain using the Substrate framework which they will later connect to Polkadot when parachains are enabled. This means that much of our adoption strategy comes down to making Substrate an attractive tool and framework. However, it’s not just enough to make building on Substrate attractive, we must also provide an incentive to these developers to actually connect their Substrate-based chain to Polkadot. Part of this incentive is the security that the Polkadot relay chain provides but another key incentive is becoming interoperable with a rich ecosystem of other projects that connect to Polkadot. This means that a key part of our adoption strategy is outreach focused. We go out there and try to convince the best projects in the space that building on our technology will provide them with significant value-add. This is not a purely technical argument. We provide significant support to projects building in our ecosystem through grants, technical support, incubatoaccelerator programs and other structured support programs such as the Substrate Builders Program (https://www.substrate.io/builders-program). I do think we really stand out in the significant, continued support that we provide to builders in our ecosystem. You can also take a look at the over 100 Grants that we’ve given from the Web3 Foundation: https://medium.com/web3foundation/web3-foundation-grants-program-reaches-100-projects-milestone-8fd2a775fd6b

Q: On moving forward through your roadmap, what are your most important next priorities? Does the Polkadot team have enough fundamentals (Funds, Community, etc.) to achieve those milestones?

A (Dieter): I would say the top priority by far is to ensure a smooth roll-out of key Polkadot features such as parachains, XCMP and other key parts of the protocol. Our recent Proof of Authority network launch was only just the beginning, it’s crucial that we carefully and successfully deploy features that allow builders to build meaningful technology. Second to that, we want to promote adoption by making more teams aware of Polkadot and how they can leverage it to build their product. Part of this comes down to the outreach that I discussed before but a major part of it is much more community-driven and many members of the team focus on this.
We are also blessed to have an awesome community to make this process easier 🙂

Q: Where can a list of Polkadot's application-specific chains can be found?

A (Dieter): The best list right now is http://www.polkaproject.com/. This is a community-led effort and the team behind it has done a terrific job. We’re also working on providing our own resource for this and we’ll share that with the community when it’s ready.

Q: Could you explain the differences and similarities between Kusama and Polkadot?

A (Dieter): Kusama is fundamentally a less robust, faster-moving version of Polkadot with less economic backing by validators. It is less robust since we will be deploying new technology to Kusama before Polkadot so it may break more frequently. It has less economic backing than Polkadot, so a network takeover is easier on Kusama than on Polkadot, lending itself more to use cases without the need for bank-like security.
In exchange for lower security and robustness, we expect the cost of a parachain lease to be lower on Kusama than Polkadot. Polkadot will always be 100% focused on security and robustness and I expect that applications that deal with high-value transactions such as those in the DeFi space will always want a Polkadot deployment, I think there will be a market for applications that are willing to trade cheap, high throughput for lower security and robustness such as those in the gaming, content distribution or social networking sectors. Check out - https://polkadot.network/kusama-polkadot-comparing-the-cousins/ for more detailed info!

Q: and for what reasons would a developer choose one over the other?

A (Dieter): Firstly, I see some earlier stage teams who are still iterating on their technology choosing to deploy to Kusama exclusively because of its lower-stakes, faster moving environment where it will be easier for them to iterate on their technology and build their user base. These will likely encompass the above sectors I identified earlier. To these teams, Polkadot becomes an eventual upgrade path for them if, and when, they are able to perfect their product, build a larger community of users and start to need the increased stability and security that Polkadot will provide.
Secondly, I suspect many teams who have their main deployment on Polkadot will also have an additional deployment on Kusama to allow them to test new features, either their tech or changes to the network, before these are deployed to Polkadot mainnet.

Logan Saether, Technical Education, Web3 Foundation

Q: Sweet, let's move over to Logan. Logan - could you introduce yourself, your background, and your role within the Polkadot ecosystem?

A (Logan): My initial involvement in the industry was as a smart contract engineer. During this time I worked on a few projects, including a reboot of the Ethereum Alarm Clock project originally by Piper Merriam. However, I had some frustrations at the time with the limitations of the EVM environment and began to look at other tools which could help me build the projects that I envisioned. This led to me looking at Substrate and completing a bounty for Web3 Foundation, after which I applied and joined the Technical Education team. My responsibilities at the Technical Education team include maintaining the Polkadot Wiki as a source of truth on the Polkadot ecosystem, creating example applications, writing technical documentation, giving talks and workshops, as well as helping initiatives such as the Thousand Validator Programme.

Q: The first technical question submitted for you was: "When will an official Polkadot mobile wallet appear?"

A (Logan): There is already an “official” wallet from Parity Technologies called the Parity Signer. Parity Signer allows you to keep your private keys on an air-gapped mobile device and to interactively sign messages using web interfaces such as Polkadot JS Apps. If you’re looking for something that is more of an interface to the blockchain as well as a wallet, you might be interested in PolkaWallet which is a community team that is building a full mobile interface for Polkadot.
For more information on Parity Signer check out the website: https://www.parity.io/signe

Q: Great thanks...our next question is: If someone already developed an application to run on Ethereum, but wants the interoperability that Polkadot will offer, are there any advantages to rebuilding with Substrate to run as a parachain on the Polkadot network instead of just keeping it on Ethereum and using the Ethereum bridge for use with Polkadot?

A (Logan): Yes, the advantage you would get from building on Substrate is more control over how your application will interact with the greater Polkadot ecosystem, as well as a larger design canvas for future iterations of your application.
Using an Ethereum bridge will probably have more cross chain latency than using a Polkadot parachain directly. The reason for this is due to the nature of Ethereum’s separate consensus protocol from Polkadot. For parachains, messages can be sent to be included in the next block with guarantees that they will be delivered. On bridged chains, your application will need to go through more routes in order to execute on the desired destination. It must first route from your application on Ethereum to the Ethereum bridge parachain, and afterward dispatch the XCMP message from the Polkadot side of the parachain. In other words, an application on Ethereum would first need to cross the bridge then send a message, while an application as a parachain would only need to send the message without needing to route across an external bridge.

Q: DOT transfers won't go live until Web3 removes the Sudo module and token holders approve the proposal to unlock them. But when will staking rewards start to be distributed? Will it have to after token transfers unlock? Or will accounts be able to accumulate rewards (still locked) once the network transitions to NPoS?

A (Logan): Staking rewards will be distributed starting with the transition to NPoS. Transfers will still be locked during the beginning of this phase, but reward payments are technically different from the normal transfer mechanism. You can read more about the launch process and steps at http://polkadot.network/launch-roadmap

Q: Next question is: I'm interested in how Cumulus/parachain development is going. ETA for when we will see the first parachain registered working on Kusama or some other public testnet like Westend maybe?

A (Logan): Parachains and Cumulus is a current high priority development objective of the Parity team. There have already been PoC parachains running with Cumulus on local testnets for months. The current work now is making the availability and validity subprotocols production ready in the Polkadot client. The best way to stay up to date would be to follow the project boards on GitHub that have delineated all of the tasks that should be done. Ideally, we can start seeing parachains on Westend soon with the first real parachains being deployed on Kusama thereafter.
The projects board can be viewed here: https://github.com/paritytech/polkadot/projects
Dan: Also...check out Basti's tweet from yesterday on the Cumulus topic: https://twitter.com/bkchstatus/1270479898696695808?s=20

Q: In what ways does Polkadot support smart contracts?

A (Logan): The philosophy behind the Polkadot Relay Chain is to be as minimal as possible, but allow arbitrary logic at the edges in the parachains. For this reason, Polkadot does not support smart contracts natively on the Relay Chain. However, it will support smart contracts on parachains. There are already a couple major initiatives out there. One initiative is to allow EVM contracts to be deployed on parachains, this includes the Substrate EVM module, Parity’s Frontier, and projects such as Moonbeam. Another initiative is to create a completely new smart contract stack that is native to Substrate. This includes the Substrate Contracts pallet, and the ink! DSL for writing smart contracts.
Learn more about Substrate's compatibility layer with Ethereum smart contracts here: https://github.com/paritytech/frontier

Will Pankiewicz, Master of Validators, Parity Technologies


Q: (Dan) Thanks for all the answers. Now we’ll start going through some staking questions with Will related to validating and nominating on Polkadot. Will - could you introduce yourself, your background, and your role within the Polkadot ecosystem?

A (Will): Sure thing. Like many others, Bitcoin drew me in back in 2013, but it wasn't until Ethereum came that I took the deep dive into working in the space full time. It was the financial infrastructure aspects of cryptocurrencies I was initially interested in, and first worked on dexes, algorithmic trading, and crypto funds. I really liked the idea of "Generalized Mining" that CoinFund came up with, and started to explore the whacky ways the crypto funds and others can both support ecosystems and be self-sustaining at the same time. This drew me to a lot of interesting experiments in what later became DeFi, as well as running validators on Proof of Stake networks. My role in the Polkadot ecosystem as “Master of Validators” is ensuring the needs of our validator community get met.

Q: Cool thanks. Our first community question was "Is it still more profitable to nominate the validators with lesser stake?"

A (Will): It depends on their commission, but generally yes it is more profitable to nominate validators with lesser stake. When validators have lesser stake, when you nominate them this makes your nomination stake a higher percentage of total stake. This means when rewards get distributed, it will be split more favorably toward you, as rewards are split by total stake percentage. Our entire rewards scheme is that every era (6 hours in Kusama, 24 hours in Polkadot), a certain amount of rewards get distributed, where that amount of rewards is dependent on the total amount of tokens staked for the entire network (50% of all tokens staked is currently optimal). These rewards from the end of an era get distributed roughly equally to all validators active in the validator set. The reward given to each validator is then split between the validators and all their nominators, determined by the total stake that each entity contributes. So if you contribute to a higher percentage of the total stake, you will earn more rewards.

Q: What does priority ranking under nominator addresses mean? For example, what does it mean that nominator A has priority 1 and nominator B has priority 6?

A (Will): Priority ranking is just the index of the nomination that gets stored on chain. It has no effect on how stake gets distributed in Phragmen or how rewards get calculated. This is only the order that the nominator chose their validators. The way that stake from a nominator gets distributed from a nominator to validators is via Phragmen, which is an algorithm that will optimally put stake behind validators so that distribution is roughly equal to those that will get in the validator set. It will try to maximize the total amount at stake in the network and maximize the stake behind minimally staked validators.

Q: On Polkadot.js, what does it mean when there are nodes waiting on Polkadot?

**A (Will):**In Polkadot there is a fixed validator set size that is determined by governance. The way validators get in the active set is by having the highest amount of total stake relative to other validators. So if the validator set size is 100, the top 100 validators by total stake will be in the validator set. Those not active in the validator set will be considered “waiting”.

Q: Another question...Is it necessary to become a waiting validator node right now?

A (Will): It's not necessary, but highly encouraged if you actively want to validate on Polkadot. The longer you are in the waiting tab, the longer you get exposure to nominators that may nominate you.

Q: Will current validators for Kusama also validate for Polkadot? How strongly should I consider their history (with Kusama) when looking to nominate a good validator for DOTs?

A (Will): A lot of Kusama validators will also be validators for Polkadot, as KSM was initially distributed to DOT holders. The early Kusama Validators will also likely be the first Polkadot validators. Being a Kusama validator should be a strong indicator for who to nominate on Polkadot, as the chaos that has ensued with Kusama has allowed validators to battle test their infrastructure. Kusama validators by now are very familiar with tooling, block explorers, terminology, common errors, log formats, upgrades, backups, and other aspects of node operation. This gives them an edge against Polkadot validators that may be new to the ecosystem. You should strongly consider well known Kusama validators when making your choices as a nominator on Polkadot.

Q: Can you go into more details about the process for becoming a DOT validator? Is it similar as the KSM 1000 validators program?

A (Will): The Process for becoming a DOT validators is first to have DOTs. You cannot be a validator without DOTs, as DOTs are used to pay transaction fees, and the minimum amount of DOTs you need is enough to create a validate transaction. After obtaining enough DOTs, you will need to set up your validator infrastructure. Ideally you should have a validator node with specs that match what we call standard hardware, as well as one or more sentry nodes to help isolate the validator node from attacks. After the infrastructure is up and running, you should have your Polkadot accounts set up right with a stash bonded to a controller account, and then submit a validate transaction, which will tell the network your nodes are ready to be a part of the network. You should then try and build a community around your validator to let others know you are trustworthy so that they will nominate you. The 1000 validators programme for Kusama is a programme that gives a certain amount of nominations from the Web3 Foundation and Parity to help bootstrap a community and reputation for validators. There may eventually be a similar type of programme for Polkadot as well.
Dan: Thanks a lot for all the answers, Will. That’s the end of the pre-submitted questions and now we’ll open the chat up to live Q&A, and our three team members will get through as many of your questions as possible.
We will take questions related to business development, technology, validating, and staking. For those wondering about DOT:
DOT tokens do not exist yet. Allocations of Polkadot's native DOT token are technically and legally non-transferable. Hence any publicized sale of DOTs is unsanctioned by Web3 Foundation and possibly fraudulent. Any official public sale of DOTs will be announced on the Web3 Foundation website. Polkadot’s launch process started in May and full network decentralization later this year, holders of DOT allocations will determine issuance and transferability. For those who participated in previous DOT sales, you can learn how to claim your DOTs here (https://wiki.polkadot.network/docs/en/claims).


Telegram Community Follow-up Questions Addressed Below


Q: Polkadot looks good but it confuses me that there are so many other Blockchain projects. What should I pay attention in Polkadot to give it the importance it deserves? What are your planning to achieve with your project?

A (Will): Personally, what I think differentiates it is the governance process. Coordinating forkless upgrades and social coordination helps stand it apart.
A (Dieter): The wiki is awesome - https://wiki.polkadot.network/

Q: Over 10,000 ETH paid as a transaction fee , what if this happens on Polkadot? Is it possible we can go through governance to return it to the owner?

A: Anything is possible with governance including transaction reversals, if a network quorum is reached on a topic.
A (Logan): Polkadot transaction fees work differently than the fees on Ethereum so it's a bit more difficult to shoot yourself in the foot as the whale who sent this unfortunate transaction. See here for details on fees: https://w3f-research.readthedocs.io/en/latest/polkadot/Token%20Economics.html?highlight=transaction%20fees#relay-chain-transaction-fees-and-per-block-transaction-limits
However, there is a tip that the user can input themselves which they could accidentally set to a large amount. In this cases, yes, they could proposition governance to reduce the amount that was paid in the tip.

Q: What is the minimum ideal amount of DOT and KSM to have if you want to become a validator and how much technical knowledge do you need aside from following the docs?

A (Will): It depends on what the other validators in the ecosystem are staking as well as the validator set size. You just need to be in the top staking amount of the validator set size. So if its 100 validators, you need to be in the top 100 validators by stake.

Q: Will Web3 nominate validators? If yes, which criteria to be elected?

A (Will): Web 3 Foundation is running programs like the 1000 validators programme for Kusama. There's a possibility this will continue on for Polkadot as well after transfers are enabled. https://thousand-validators.kusama.network/#/
You will need to be an active validator to earn rewards. Only those active in the validator set earn rewards. I would recommend checking out parts of the wiki: https://wiki.polkadot.network/docs/en/maintain-guides-validator-payout

Q: Is it possible to implement hastables or dag with substrate?

A (Logan): Yes.

Q: Polkadot project looks very futuristic! But, could you tell us the main role of DOT Tokens in the Polkadot Ecosystem?

A (Dan): That's a good question. The short answer is Staking, Governance, Bonding. More here: http://polkadot.network/dot-token

Q: How did you manage to prove that the consensus protocol is safe and unbreakable mathematically?

A (Dieter): We have a research teams of over a dozen scientists with PhDs and post-docs in cryptography and distributed computing who do thorough theoretical analyses on all the protocols used in Polkadot

Q: What are the prospects for NFT?

A: Already being built 🙂

Q: What will be Polkadot next roadmap for 2020 ?

A (Dieter): Building. But seriously - we will continue to add many more features and upgrades to Polkadot as well as continue to strongly focus on adoption from other builders in the ecosystem 🙂
A (Will): https://polkadot.network/launch-roadmap/
This is the launch roadmap. Ideally adding parachains and xcmp towards the end of the year

Q: How Do you stay active in terms of marketing developments during this PANDEMIC? Because I'm sure you're very excited to promote more after this settles down.

A (Dan): The main impact of covid was the impact on in-person events. We have been very active on Crowdcast for webinars since 2019, so it was quite the smooth transition to all-online events. You can see our 40+ past event recordings and follow us on Crowdcast here: https://www.crowdcast.io/polkadot. If you're interested in following our emails for updates (including online events), subscribe here: https://info.polkadot.network/subscribe

Q: Hi, who do you think is your biggest competitor in the space?

A (Dan): Polkadot is a metaprotocol that hasn't been seen in the industry up until this point. We hope to elevate the industry by providing interoperability between all major public networks as well as private blockchains.

Q: Is Polkadot a friend or competitor of Ethereum?

A: Polkadot aims to elevate the whole blockchain space with serious advancements in interoperability, governance and beyond :)

Q: When will there be hardware wallet support?

A (Will): Parity Signer works well for now. Other hardware wallets will be added pretty soon

Q: What are the attractive feature of DOT project that can attract any new users ?

A: https://polkadot.network/what-is-polkadot-a-brief-introduction/
A (Will): Buidling parachains with cross chain messaging + bridges to other chains I think will be a very appealing feature for developers

Q: According to you how much time will it take for Polkadot to get into mainstream adoption and execute all the plans set for this project?

A: We are solving many problems that have held back the blockchain industry up until now. Here is a summary in basic terms:
https://preview.redd.it/ls7i0bpm8p951.png?width=752&format=png&auto=webp&s=a8eb7bf26eac964f6b9056aa91924685ff359536

Q: When will bitpie or imtoken support DOT?

A: We are working on integrations on all the biggest and best wallet providers. ;)

Q: What event/call can we track to catch a switch to nPOS? Is it only force_new_era call? Thanks.

A (Will): If you're on riot, useful channels to follow for updates like this are #polkabot:matrix.org and #polkadot-announcements:matrix.parity.io
A (Logan): Yes this is the trigger for initiating the switch to NPoS. You can also poll the ForceEra storage for when it changes to ForceNew.

Q: What strategy will the Polkadot Team use to make new users trust its platform and be part of it?

A (Will): Pushing bleeding edge cryptography from web 3 foundation research
A (Dan): https://t.me/PolkadotOfficial/43378

Q: What technology stands behind and What are its advantages?

A (Dieter): Check out https://polkadot.network/technology/ for more info on our tech stack!

Q: What problems do you see occurring in the blockchain industry nowadays and how does your project aims to solve these problems?

A (Will): Governance I see as a huge problem. For example upgrading Bitcoin and making decisions for changing things is a very challenging process. We have robust systems of on-chain governance to help solve these coordination problems

Q: How involved are the Polkadot partners? Are they helping with the development?

A (Dieter): There are a variety of groups building in the Polkadot ecosystem. Check out http://www.polkaproject.com/ for a great list.

Q: Can you explain the role of the treasury in Polkadot?

A (Will): The treasury is for projects or people that want to build things, but don't want to go through the formal legal process of raising funds from VCs or grants or what have you. You can get paid by the community to build projects for the community.
A: There’s a whole section on the wiki about the treasury and how it functions here https://wiki.polkadot.network/docs/en/mirror-learn-treasury#docsNav

Q: Any plan to introduce Polkadot on Asia, or rising market on Asia?

**A (Will):**We're globally focused

Q: What kind of impact do you expect from the Council? Although it would be elected by token holders, what kind of people you wish to see there?

A (Will): Community focused individuals like u/jam10o that want to see cool things get built and cool communities form

If you have further questions, please ask in the official Polkadot Telegram channel.
submitted by dzr9127 to dot [link] [comments]

Why i’m bullish on Zilliqa (long read)

Hey all, I've been researching coins since 2017 and have gone through 100s of them in the last 3 years. I got introduced to blockchain via Bitcoin of course, analysed Ethereum thereafter and from that moment I have a keen interest in smart contact platforms. I’m passionate about Ethereum but I find Zilliqa to have a better risk reward ratio. Especially because Zilliqa has found an elegant balance between being secure, decentralised and scalable in my opinion.
 
Below I post my analysis why from all the coins I went through I’m most bullish on Zilliqa (yes I went through Tezos, EOS, NEO, VeChain, Harmony, Algorand, Cardano etc.). Note that this is not investment advice and although it's a thorough analysis there is obviously some bias involved. Looking forward to what you all think!
 
Fun fact: the name Zilliqa is a play on ‘silica’ silicon dioxide which means “Silicon for the high-throughput consensus computer.”
 
This post is divided into (i) Technology, (ii) Business & Partnerships, and (iii) Marketing & Community. I’ve tried to make the technology part readable for a broad audience. If you’ve ever tried understanding the inner workings of Bitcoin and Ethereum you should be able to grasp most parts. Otherwise just skim through and once you are zoning out head to the next part.
 
Technology and some more:
 
Introduction The technology is one of the main reasons why I’m so bullish on Zilliqa. First thing you see on their website is: “Zilliqa is a high-performance, high-security blockchain platform for enterprises and next-generation applications.” These are some bold statements.
 
Before we deep dive into the technology let’s take a step back in time first as they have quite the history. The initial research paper from which Zilliqa originated dates back to August 2016: Elastico: A Secure Sharding Protocol For Open Blockchains where Loi Luu (Kyber Network) is one of the co-authors. Other ideas that led to the development of what Zilliqa has become today are: Bitcoin-NG, collective signing CoSi, ByzCoin and Omniledger.
 
The technical white paper was made public in August 2017 and since then they have achieved everything stated in the white paper and also created their own open source intermediate level smart contract language called Scilla (functional programming language similar to OCaml) too.
 
Mainnet is live since end of January 2019 with daily transaction rate growing continuously. About a week ago mainnet reached 5 million transactions, 500.000+ addresses in total along with 2400 nodes keeping the network decentralised and secure. Circulating supply is nearing 11 billion and currently only mining rewards are left. Maximum supply is 21 billion with annual inflation being 7.13% currently and will only decrease with time.
 
Zilliqa realised early on that the usage of public cryptocurrencies and smart contracts were increasing but decentralised, secure and scalable alternatives were lacking in the crypto space. They proposed to apply sharding onto a public smart contract blockchain where the transaction rate increases almost linear with the increase in amount of nodes. More nodes = higher transaction throughput and increased decentralisation. Sharding comes in many forms and Zilliqa uses network-, transaction- and computational sharding. Network sharding opens up the possibility of using transaction- and computational sharding on top. Zilliqa does not use state sharding for now. We’ll come back to this later.
 
Before we continue disecting how Zilliqa achieves such from a technological standpoint it’s good to keep in mind that a blockchain being decentralised and secure and scalable is still one of the main hurdles in allowing widespread usage of decentralised networks. In my opinion this needs to be solved first before blockchains can get to the point where they can create and add large scale value. So I invite you to read the next section to grasp the underlying fundamentals. Because after all these premises need to be true otherwise there isn’t a fundamental case to be bullish on Zilliqa, right?
 
Down the rabbit hole
 
How have they achieved this? Let’s define the basics first: key players on Zilliqa are the users and the miners. A user is anybody who uses the blockchain to transfer funds or run smart contracts. Miners are the (shard) nodes in the network who run the consensus protocol and get rewarded for their service in Zillings (ZIL). The mining network is divided into several smaller networks called shards, which is also referred to as ‘network sharding’. Miners subsequently are randomly assigned to a shard by another set of miners called DS (Directory Service) nodes. The regular shards process transactions and the outputs of these shards are eventually combined by the DS shard as they reach consensus on the final state. More on how these DS shards reach consensus (via pBFT) will be explained later on.
 
The Zilliqa network produces two types of blocks: DS blocks and Tx blocks. One DS Block consists of 100 Tx Blocks. And as previously mentioned there are two types of nodes concerned with reaching consensus: shard nodes and DS nodes. Becoming a shard node or DS node is being defined by the result of a PoW cycle (Ethash) at the beginning of the DS Block. All candidate mining nodes compete with each other and run the PoW (Proof-of-Work) cycle for 60 seconds and the submissions achieving the highest difficulty will be allowed on the network. And to put it in perspective: the average difficulty for one DS node is ~ 2 Th/s equaling 2.000.000 Mh/s or 55 thousand+ GeForce GTX 1070 / 8 GB GPUs at 35.4 Mh/s. Each DS Block 10 new DS nodes are allowed. And a shard node needs to provide around 8.53 GH/s currently (around 240 GTX 1070s). Dual mining ETH/ETC and ZIL is possible and can be done via mining software such as Phoenix and Claymore. There are pools and if you have large amounts of hashing power (Ethash) available you could mine solo.
 
The PoW cycle of 60 seconds is a peak performance and acts as an entry ticket to the network. The entry ticket is called a sybil resistance mechanism and makes it incredibly hard for adversaries to spawn lots of identities and manipulate the network with these identities. And after every 100 Tx Blocks which corresponds to roughly 1,5 hour this PoW process repeats. In between these 1,5 hour no PoW needs to be done meaning Zilliqa’s energy consumption to keep the network secure is low. For more detailed information on how mining works click here.
Okay, hats off to you. You have made it this far. Before we go any deeper down the rabbit hole we first must understand why Zilliqa goes through all of the above technicalities and understand a bit more what a blockchain on a more fundamental level is. Because the core of Zilliqa’s consensus protocol relies on the usage of pBFT (practical Byzantine Fault Tolerance) we need to know more about state machines and their function. Navigate to Viewblock, a Zilliqa block explorer, and just come back to this article. We will use this site to navigate through a few concepts.
 
We have established that Zilliqa is a public and distributed blockchain. Meaning that everyone with an internet connection can send ZILs, trigger smart contracts etc. and there is no central authority who fully controls the network. Zilliqa and other public and distributed blockchains (like Bitcoin and Ethereum) can also be defined as state machines.
 
Taking the liberty of paraphrasing examples and definitions given by Samuel Brooks’ medium article, he describes the definition of a blockchain (like Zilliqa) as:
“A peer-to-peer, append-only datastore that uses consensus to synchronise cryptographically-secure data”.
 
Next he states that: >“blockchains are fundamentally systems for managing valid state transitions”.* For some more context, I recommend reading the whole medium article to get a better grasp of the definitions and understanding of state machines. Nevertheless, let’s try to simplify and compile it into a single paragraph. Take traffic lights as an example: all its states (red, amber and green) are predefined, all possible outcomes are known and it doesn’t matter if you encounter the traffic light today or tomorrow. It will still behave the same. Managing the states of a traffic light can be done by triggering a sensor on the road or pushing a button resulting in one traffic lights’ state going from green to red (via amber) and another light from red to green.
 
With public blockchains like Zilliqa this isn’t so straightforward and simple. It started with block #1 almost 1,5 years ago and every 45 seconds or so a new block linked to the previous block is being added. Resulting in a chain of blocks with transactions in it that everyone can verify from block #1 to the current #647.000+ block. The state is ever changing and the states it can find itself in are infinite. And while the traffic light might work together in tandem with various other traffic lights, it’s rather insignificant comparing it to a public blockchain. Because Zilliqa consists of 2400 nodes who need to work together to achieve consensus on what the latest valid state is while some of these nodes may have latency or broadcast issues, drop offline or are deliberately trying to attack the network etc.
 
Now go back to the Viewblock page take a look at the amount of transaction, addresses, block and DS height and then hit refresh. Obviously as expected you see new incremented values on one or all parameters. And how did the Zilliqa blockchain manage to transition from a previous valid state to the latest valid state? By using pBFT to reach consensus on the latest valid state.
 
After having obtained the entry ticket, miners execute pBFT to reach consensus on the ever changing state of the blockchain. pBFT requires a series of network communication between nodes, and as such there is no GPU involved (but CPU). Resulting in the total energy consumed to keep the blockchain secure, decentralised and scalable being low.
 
pBFT stands for practical Byzantine Fault Tolerance and is an optimisation on the Byzantine Fault Tolerant algorithm. To quote Blockonomi: “In the context of distributed systems, Byzantine Fault Tolerance is the ability of a distributed computer network to function as desired and correctly reach a sufficient consensus despite malicious components (nodes) of the system failing or propagating incorrect information to other peers.” Zilliqa is such a distributed computer network and depends on the honesty of the nodes (shard and DS) to reach consensus and to continuously update the state with the latest block. If pBFT is a new term for you I can highly recommend the Blockonomi article.
 
The idea of pBFT was introduced in 1999 - one of the authors even won a Turing award for it - and it is well researched and applied in various blockchains and distributed systems nowadays. If you want more advanced information than the Blockonomi link provides click here. And if you’re in between Blockonomi and University of Singapore read the Zilliqa Design Story Part 2 dating from October 2017.
Quoting from the Zilliqa tech whitepaper: “pBFT relies upon a correct leader (which is randomly selected) to begin each phase and proceed when the sufficient majority exists. In case the leader is byzantine it can stall the entire consensus protocol. To address this challenge, pBFT offers a view change protocol to replace the byzantine leader with another one.”
 
pBFT can tolerate ⅓ of the nodes being dishonest (offline counts as Byzantine = dishonest) and the consensus protocol will function without stalling or hiccups. Once there are more than ⅓ of dishonest nodes but no more than ⅔ the network will be stalled and a view change will be triggered to elect a new DS leader. Only when more than ⅔ of the nodes are dishonest (>66%) double spend attacks become possible.
 
If the network stalls no transactions can be processed and one has to wait until a new honest leader has been elected. When the mainnet was just launched and in its early phases, view changes happened regularly. As of today the last stalling of the network - and view change being triggered - was at the end of October 2019.
 
Another benefit of using pBFT for consensus besides low energy is the immediate finality it provides. Once your transaction is included in a block and the block is added to the chain it’s done. Lastly, take a look at this article where three types of finality are being defined: probabilistic, absolute and economic finality. Zilliqa falls under the absolute finality (just like Tendermint for example). Although lengthy already we skipped through some of the inner workings from Zilliqa’s consensus: read the Zilliqa Design Story Part 3 and you will be close to having a complete picture on it. Enough about PoW, sybil resistance mechanism, pBFT etc. Another thing we haven’t looked at yet is the amount of decentralisation.
 
Decentralisation
 
Currently there are four shards, each one of them consisting of 600 nodes. 1 shard with 600 so called DS nodes (Directory Service - they need to achieve a higher difficulty than shard nodes) and 1800 shard nodes of which 250 are shard guards (centralised nodes controlled by the team). The amount of shard guards has been steadily declining from 1200 in January 2019 to 250 as of May 2020. On the Viewblock statistics you can see that many of the nodes are being located in the US but those are only the (CPU parts of the) shard nodes who perform pBFT. There is no data from where the PoW sources are coming. And when the Zilliqa blockchain starts reaching their transaction capacity limit, a network upgrade needs to be executed to lift the current cap of maximum 2400 nodes to allow more nodes and formation of more shards which will allow to network to keep on scaling according to demand.
Besides shard nodes there are also seed nodes. The main role of seed nodes is to serve as direct access points (for end users and clients) to the core Zilliqa network that validates transactions. Seed nodes consolidate transaction requests and forward these to the lookup nodes (another type of nodes) for distribution to the shards in the network. Seed nodes also maintain the entire transaction history and the global state of the blockchain which is needed to provide services such as block explorers. Seed nodes in the Zilliqa network are comparable to Infura on Ethereum.
 
The seed nodes were first only operated by Zilliqa themselves, exchanges and Viewblock. Operators of seed nodes like exchanges had no incentive to open them for the greater public.They were centralised at first. Decentralisation at the seed nodes level has been steadily rolled out since March 2020 ( Zilliqa Improvement Proposal 3 ). Currently the amount of seed nodes is being increased, they are public facing and at the same time PoS is applied to incentivize seed node operators and make it possible for ZIL holders to stake and earn passive yields. Important distinction: seed nodes are not involved with consensus! That is still PoW as entry ticket and pBFT for the actual consensus.
 
5% of the block rewards are being assigned to seed nodes (from the beginning in 2019) and those are being used to pay out ZIL stakers.The 5% block rewards with an annual yield of 10.03% translates to roughly 610 MM ZILs in total that can be staked. Exchanges use the custodial variant of staking and wallets like Moonlet will use the non custodial version (starting in Q3 2020). Staking is being done by sending ZILs to a smart contract created by Zilliqa and audited by Quantstamp.
 
With a high amount of DS & shard nodes and seed nodes becoming more decentralised too, Zilliqa qualifies for the label of decentralised in my opinion.
 
Smart contracts
 
Let me start by saying I’m not a developer and my programming skills are quite limited. So I‘m taking the ELI5 route (maybe 12) but if you are familiar with Javascript, Solidity or specifically OCaml please head straight to Scilla - read the docs to get a good initial grasp of how Zilliqa’s smart contract language Scilla works and if you ask yourself “why another programming language?” check this article. And if you want to play around with some sample contracts in an IDE click here. Faucet can be found here. And more information on architecture, dapp development and API can be found on the Developer Portal.
If you are more into listening and watching: check this recent webinar explaining Zilliqa and Scilla. Link is time stamped so you’ll start right away with a platform introduction, R&D roadmap 2020 and afterwards a proper Scilla introduction.
 
Generalised: programming languages can be divided into being ‘object oriented’ or ‘functional’. Here is an ELI5 given by software development academy: > “all programmes have two basic components, data – what the programme knows – and behaviour – what the programme can do with that data. So object-oriented programming states that combining data and related behaviours in one place, is called “object”, which makes it easier to understand how a particular program works. On the other hand, functional programming argues that data and behaviour are different things and should be separated to ensure their clarity.”
 
Scilla is on the functional side and shares similarities with OCaml: > OCaml is a general purpose programming language with an emphasis on expressiveness and safety. It has an advanced type system that helps catch your mistakes without getting in your way. It's used in environments where a single mistake can cost millions and speed matters, is supported by an active community, and has a rich set of libraries and development tools. For all its power, OCaml is also pretty simple, which is one reason it's often used as a teaching language.
 
Scilla is blockchain agnostic, can be implemented onto other blockchains as well, is recognised by academics and won a so called Distinguished Artifact Award award at the end of last year.
 
One of the reasons why the Zilliqa team decided to create their own programming language focused on preventing smart contract vulnerabilities safety is that adding logic on a blockchain, programming, means that you cannot afford to make mistakes. Otherwise it could cost you. It’s all great and fun blockchains being immutable but updating your code because you found a bug isn’t the same as with a regular web application for example. And with smart contracts it inherently involves cryptocurrencies in some form thus value.
 
Another difference with programming languages on a blockchain is gas. Every transaction you do on a smart contract platform like Zilliqa for Ethereum costs gas. With gas you basically pay for computational costs. Sending a ZIL from address A to address B costs 0.001 ZIL currently. Smart contracts are more complex, often involve various functions and require more gas (if gas is a new concept click here ).
 
So with Scilla, similar to Solidity, you need to make sure that “every function in your smart contract will run as expected without hitting gas limits. An improper resource analysis may lead to situations where funds may get stuck simply because a part of the smart contract code cannot be executed due to gas limits. Such constraints are not present in traditional software systems”. Scilla design story part 1
 
Some examples of smart contract issues you’d want to avoid are: leaking funds, ‘unexpected changes to critical state variables’ (example: someone other than you setting his or her address as the owner of the smart contract after creation) or simply killing a contract.
 
Scilla also allows for formal verification. Wikipedia to the rescue:
In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.
 
Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
 
Scilla is being developed hand-in-hand with formalization of its semantics and its embedding into the Coq proof assistant — a state-of-the art tool for mechanized proofs about properties of programs.”
 
Simply put, with Scilla and accompanying tooling developers can be mathematically sure and proof that the smart contract they’ve written does what he or she intends it to do.
 
Smart contract on a sharded environment and state sharding
 
There is one more topic I’d like to touch on: smart contract execution in a sharded environment (and what is the effect of state sharding). This is a complex topic. I’m not able to explain it any easier than what is posted here. But I will try to compress the post into something easy to digest.
 
Earlier on we have established that Zilliqa can process transactions in parallel due to network sharding. This is where the linear scalability comes from. We can define simple transactions: a transaction from address A to B (Category 1), a transaction where a user interacts with one smart contract (Category 2) and the most complex ones where triggering a transaction results in multiple smart contracts being involved (Category 3). The shards are able to process transactions on their own without interference of the other shards. With Category 1 transactions that is doable, with Category 2 transactions sometimes if that address is in the same shard as the smart contract but with Category 3 you definitely need communication between the shards. Solving that requires to make a set of communication rules the protocol needs to follow in order to process all transactions in a generalised fashion.
 
And this is where the downsides of state sharding comes in currently. All shards in Zilliqa have access to the complete state. Yes the state size (0.1 GB at the moment) grows and all of the nodes need to store it but it also means that they don’t need to shop around for information available on other shards. Requiring more communication and adding more complexity. Computer science knowledge and/or developer knowledge required links if you want to dig further: Scilla - language grammar Scilla - Foundations for Verifiable Decentralised Computations on a Blockchain Gas Accounting NUS x Zilliqa: Smart contract language workshop
 
Easier to follow links on programming Scilla https://learnscilla.com/home Ivan on Tech
 
Roadmap / Zilliqa 2.0
 
There is no strict defined roadmap but here are topics being worked on. And via the Zilliqa website there is also more information on the projects they are working on.
 
Business & Partnerships  
It’s not only technology in which Zilliqa seems to be excelling as their ecosystem has been expanding and starting to grow rapidly. The project is on a mission to provide OpenFinance (OpFi) to the world and Singapore is the right place to be due to its progressive regulations and futuristic thinking. Singapore has taken a proactive approach towards cryptocurrencies by introducing the Payment Services Act 2019 (PS Act). Among other things, the PS Act will regulate intermediaries dealing with certain cryptocurrencies, with a particular focus on consumer protection and anti-money laundering. It will also provide a stable regulatory licensing and operating framework for cryptocurrency entities, effectively covering all crypto businesses and exchanges based in Singapore. According to PWC 82% of the surveyed executives in Singapore reported blockchain initiatives underway and 13% of them have already brought the initiatives live to the market. There is also an increasing list of organisations that are starting to provide digital payment services. Moreover, Singaporean blockchain developers Building Cities Beyond has recently created an innovation $15 million grant to encourage development on its ecosystem. This all suggest that Singapore tries to position itself as (one of) the leading blockchain hubs in the world.
 
Zilliqa seems to already taking advantage of this and recently helped launch Hg Exchange on their platform, together with financial institutions PhillipCapital, PrimePartners and Fundnel. Hg Exchange, which is now approved by the Monetary Authority of Singapore (MAS), uses smart contracts to represent digital assets. Through Hg Exchange financial institutions worldwide can use Zilliqa's safe-by-design smart contracts to enable the trading of private equities. For example, think of companies such as Grab, AirBnB, SpaceX that are not available for public trading right now. Hg Exchange will allow investors to buy shares of private companies & unicorns and capture their value before an IPO. Anquan, the main company behind Zilliqa, has also recently announced that they became a partner and shareholder in TEN31 Bank, which is a fully regulated bank allowing for tokenization of assets and is aiming to bridge the gap between conventional banking and the blockchain world. If STOs, the tokenization of assets, and equity trading will continue to increase, then Zilliqa’s public blockchain would be the ideal candidate due to its strategic positioning, partnerships, regulatory compliance and the technology that is being built on top of it.
 
What is also very encouraging is their focus on banking the un(der)banked. They are launching a stablecoin basket starting with XSGD. As many of you know, stablecoins are currently mostly used for trading. However, Zilliqa is actively trying to broaden the use case of stablecoins. I recommend everybody to read this text that Amrit Kumar wrote (one of the co-founders). These stablecoins will be integrated in the traditional markets and bridge the gap between the crypto world and the traditional world. This could potentially revolutionize and legitimise the crypto space if retailers and companies will for example start to use stablecoins for payments or remittances, instead of it solely being used for trading.
 
Zilliqa also released their DeFi strategic roadmap (dating November 2019) which seems to be aligning well with their OpFi strategy. A non-custodial DEX is coming to Zilliqa made by Switcheo which allows cross-chain trading (atomic swaps) between ETH, EOS and ZIL based tokens. They also signed a Memorandum of Understanding for a (soon to be announced) USD stablecoin. And as Zilliqa is all about regulations and being compliant, I’m speculating on it to be a regulated USD stablecoin. Furthermore, XSGD is already created and visible on block explorer and XIDR (Indonesian Stablecoin) is also coming soon via StraitsX. Here also an overview of the Tech Stack for Financial Applications from September 2019. Further quoting Amrit Kumar on this:
 
There are two basic building blocks in DeFi/OpFi though: 1) stablecoins as you need a non-volatile currency to get access to this market and 2) a dex to be able to trade all these financial assets. The rest are build on top of these blocks.
 
So far, together with our partners and community, we have worked on developing these building blocks with XSGD as a stablecoin. We are working on bringing a USD-backed stablecoin as well. We will soon have a decentralised exchange developed by Switcheo. And with HGX going live, we are also venturing into the tokenization space. More to come in the future.”*
 
Additionally, they also have this ZILHive initiative that injects capital into projects. There have been already 6 waves of various teams working on infrastructure, innovation and research, and they are not from ASEAN or Singapore only but global: see Grantees breakdown by country. Over 60 project teams from over 20 countries have contributed to Zilliqa's ecosystem. This includes individuals and teams developing wallets, explorers, developer toolkits, smart contract testing frameworks, dapps, etc. As some of you may know, Unstoppable Domains (UD) blew up when they launched on Zilliqa. UD aims to replace cryptocurrency addresses with a human readable name and allows for uncensorable websites. Zilliqa will probably be the only one able to handle all these transactions onchain due to ability to scale and its resulting low fees which is why the UD team launched this on Zilliqa in the first place. Furthermore, Zilliqa also has a strong emphasis on security, compliance, and privacy, which is why they partnered with companies like Elliptic, ChainSecurity (part of PwC Switzerland), and Incognito. Their sister company Aqilliz (Zilliqa spelled backwards) focuses on revolutionizing the digital advertising space and is doing interesting things like using Zilliqa to track outdoor digital ads with companies like Foodpanda.
 
Zilliqa is listed on nearly all major exchanges, having several different fiat-gateways and recently have been added to Binance’s margin trading and futures trading with really good volume. They also have a very impressive team with good credentials and experience. They dont just have “tech people”. They have a mix of tech people, business people, marketeers, scientists, and more. Naturally, it's good to have a mix of people with different skill sets if you work in the crypto space.
 
Marketing & Community
 
Zilliqa has a very strong community. If you just follow their Twitter their engagement is much higher for a coin that has approximately 80k followers. They also have been ‘coin of the day’ by LunarCrush many times. LunarCrush tracks real-time cryptocurrency value and social data. According to their data it seems Zilliqa has a more fundamental and deeper understanding of marketing and community engagement than almost all other coins. While almost all coins have been a bit frozen in the last months, Zilliqa seems to be on its own bull run. It was somewhere in the 100s a few months ago and is currently ranked #46 on CoinGecko. Their official Telegram also has over 20k people and is very active, and their community channel which is over 7k now is more active and larger than many other official channels. Their local communities) also seem to be growing.
 
Moreover, their community started ‘Zillacracy’ together with the Zilliqa core team ( see www.zillacracy.com ). It’s a community run initiative where people from all over the world are now helping with marketing and development on Zilliqa. Since its launch in February 2020 they have been doing a lot and will also run their own non custodial seed node for staking. This seed node will also allow them to start generating revenue for them to become a self sustaining entity that could potentially scale up to become a decentralized company working in parallel with the Zilliqa core team. Comparing it to all the other smart contract platforms (e.g. Cardano, EOS, Tezos etc.) they don't seem to have started a similar initiatives (correct me if I’m wrong though). This suggest in my opinion that these other smart contract platforms do not fully understand how to utilize the ‘power of the community’. This is something you cannot ‘buy with money’ and gives many projects in the space a disadvantage.
 
Zilliqa also released two social products called SocialPay and Zeeves. SocialPay allows users to earn ZILs while tweeting with a specific hashtag. They have recently used it in partnership with the Singapore Red Cross for a marketing campaign after their initial pilot program. It seems like a very valuable social product with a good use case. I can see a lot of traditional companies entering the space through this product, which they seem to suggest will happen. Tokenizing hashtags with smart contracts to get network effect is a very smart and innovative idea.
 
Regarding Zeeves, this is a tipping bot for Telegram. They already have 1000s of signups and they plan to keep upgrading it for more and more people to use it (e.g. they recently have added a quiz features). They also use it during AMAs to reward people in real time. It’s a very smart approach to grow their communities and get familiar with ZIL. I can see this becoming very big on Telegram. This tool suggests, again, that the Zilliqa team has a deeper understanding what the crypto space and community needs and is good at finding the right innovative tools to grow and scale.
 
To be honest, I haven’t covered everything (i’m also reaching the character limited haha). So many updates happening lately that it's hard to keep up, such as the International Monetary Fund mentioning Zilliqa in their report, custodial and non-custodial Staking, Binance Margin, Futures & Widget, entering the Indian market, and more. The Head of Marketing Colin Miles has also released this as an overview of what is coming next. And last but not least, Vitalik Buterin has been mentioning Zilliqa lately acknowledging Zilliqa and mentioning that both projects have a lot of room to grow. There is much more info of course and a good part of it has been served to you on a silver platter. I invite you to continue researching by yourself :-) And if you have any comments or questions please post here!
submitted by haveyouheardaboutit to CryptoCurrency [link] [comments]

CYPHERIUM ENHACES BLOCKCHAIN TECHNOLOGY

OVERVIEW
Rarely has any technology such as blockchain attracted the public and media organisations. Institutions designed to catalyze the fourth industrial revolution are experimenting with technology, and investors have invested hundreds of millions of dollars in blockchain companies. This is a low-risk, experimental environment with error protection. Innovation is a combination of creativity and implementation. Ideas often must go through an evolutionary or cyclical phase before they are ready for commercialization. In fact, the cycle is so long that it is too expensive, inefficient in terms of time and money to generate and generate ideas, and in most cases almost never reaches commercial value. Thus, almost 99% of venture capital firms fail.
A fast growing technology that has come to enhance the blockchain technology is CYPHERIUM.

CHALLENGES FACING THE BLOCKCHAIN TECHNOLOGY
The Bitcoin framework is one of the most notable usage of blockchain innovations in circulated exchange based frameworks. In Bitcoin, each system hub seeks the benefit of putting away a lot of at least one exchanges in another square of the blockchain by comprehending a complex computational math issue, here and there alluded to as a mining verification of-work (POW). Under current conditions, a lot of exchanges is ordinarily put away in another square of the Bitcoin blockchain at a pace of around one new square like clockwork, and each square has an inexact size of one megabyte (MB). As needs be, the Bitcoin framework is dependent upon a looming versatility issue: as it were 3 to 7 exchanges can be handled every second, which is far underneath the quantity of exchanges handled in other exchange based frameworks, for example, the roughly 30,000 exchanges for each second in the Visa™ exchange framework. The most huge disadvantage of the Nakamoto accord is its absence of irrevocability. Conclusion implies once an exchange or an activity is performed on the blockchain, it is for all time recorded on the blockchain and difficult to turn around. This is fundamental to the wellbeing of money related repayment frameworks as exchanges must not be saved once they are made. For Bitcoin's situation, noxious on-screen characters can alter the exchange history given enough hash power, causing a twofold spending assault, given that there is sufficient motivator and money related practicality to complete such assaults. Given that mining gear leasing and botnets are at present predominant around the world, such an assault has become achievable.
Because of this absence of conclusiveness, Nakamoto accord must depend on additional measures, for example, confirmation of-work to forestall pernicious exercises. This hinders the capacity ofNakamoto accord to scale in light of the fact that a exchange must hang tight for various affirmations before coming to "probabilistic absolution".
In this way, wellbeing isn't ensured by Nakamoto agreement, and so as to secure the system, each exchange must experience extra an ideal opportunity to process. For Bitcoin's situation, an exchange isn't considered last until in any event six affirmations. Since Bitcoin can just process a couple of exchanges every second, the exchange cost is preposterously high, making it unreasonable for little installments like shopping for food or eatery feasting. This extraordinarily frustrates Bitcoin's utilization as an installment strategy in this present reality.

CYPHERIUM SOLUTIONS
Cypherium's exclusive algorithm, CypherBFT conquers burdens of the earlier craftsmanship by giving a circulated exchange framework including a gathering of validator hubs that are known to each other in a system however are undefined to the next system hubs in the system. As utilized thus, the gathering of validator hubs might be alluded to as a "Board of trustees" of validator hubs. In a few explanations, the framework reconfigures at least one validator hubs in the Committee dependent on the consequences of confirmation of-work (POW) challenges. As per some uncovered epitomes, a system hub that isn't as of now a validator hub in the Committee might be added to the Committee on the off chance that it effectively finishes a POW challenge. In such an occasion, the system hub may turn into another validator hub in the Committee, supplanting a current validator hub. In elective epitomes, a system hub may become another validator hub in the Committee dependent on a proof-of-stake (POS) accord. In yet another epitome, a system hub may turn into another validator hub in the Committee dependent on a verification of-authority (POA) agreement. In other elective exemplifications, a system hub may turn into a new validator hub in the Committee dependent on a mix of any of POW, POA, and POS accord.

In some revealed exemplifications, the new validator hub replaces a validator hub in the Committee. The substitution might be founded on a foreordained guideline known by all the hubs in the system. For model, the new validator hub may supplant the most established validator hub in the Committee. As indicated by another model, the new validator hub may supplant a validator hub that has been resolved to have gone disconnected, become bargained (e.g., hacked), fizzled (e.g., because of equipment breakdown), or in any case is inaccessible or not, at this point trusted. In the praiseworthy exemplifications, the circulated framework expect that for an adaptation to non-critical failure of f hubs, the Committee incorporates at any rate 3f +1 validator hubs.
Since the validator hubs in the Committee might be every now and again supplanted, for instance, contingent upon the measure of time required to finish the POW challenges, it is hard for vindictive outsiders to identify the total arrangement of validator hubs in the Committee at some random time.

BENEFITS OF CYPHERIUM BLOCKCHAIN TECHNOLOGY
Cypherium runs its exclusive CypherBFT accord, tied down by the HotStuff calculation, and can genuinely offer moment irrevocability for its system clients. With its HotStuff-based structure, the CypherBFT's runtime keeps going just 20-30 milliseconds (ms). A few affirmations are all that is required to for all time acknowledge a proposed obstruct into the blockchain, and it just takes 90ms for these affirmations to come to pass, making the procedure essentially quicker than the two-minutes required by EOS.
Cypherium's CypherBFT, which additionally uses HotStuff, doesn't have to pick between responsiveness and linearity. Cypherium's double blockchain structure incorporates the velocities of a dag, however its review for clients can occur a lot more straightforward and quicker, which adds to the accessibility of data and makes the data more decentralized.
As per some revealed epitomes, the validator hubs in the Committee may get exchange demands from other system hubs, for instance, in a P2P organize. The Committee may incorporate at any rate one validator hub that fills in as a "Pioneer" validator hub; the other validator hubs might be alluded to as "Partner" validator hubs. The Leader hub might be changed occasionally, on request, or inconsistently by the individuals from the Committee. At the point when any validator hub gets another exchange demand from a non-validator hub in the system, the exchange solicitation might be sent to the entirety of the validator hubs in the Committee. Further to the unveiled epitomes, the Pioneer hub facilitates with the other Associate validator hubs to arrive at an accord of an attitude (e.g., acknowledge or dismiss) for an exchange square containing the exchange solicitation and communicates the accord to the whole P2P arrange. In the event that the accord is to acknowledge or in any case approve the exchange demand, the mentioned exchange might be included another square of a blockchain that is known to in any event a portion of the system hubs in the system.
In conclusion, CYPHERIUM'S distributed smart-contracts block-chain is ideal for a good number of use cases which include (but not limited to):
Finance
Messaging
Voting
Notarization
Digital Agreements (Contracts)
Secure data storage
A.I (Artificial Intelligence)
IoT (Internet of Things
To know more about CYPHERIUM kindly visit the following links:
WEBSITE: https://cypherium.io/
GITHUB: https://github.com/cypherium
WHITEPAPER: https://github.com/cypherium/patent/blob/maste15224.0003%20-%20FINAL%20Draft%20Application%20(originally%200003%20invention%201)%20single%20chain%20in%20pipeline.pdf
TELEGRAM: https://t.me/cypherium_supergroup
TWITTER: http://twitter.com/cypheriumchain
FACEBOOK: https://www.facebook.com/CypheriumChain/
AUTHOR: Nwali Jennifer
submitted by iphygurl to BlockchainStartups [link] [comments]

Providing Some Clarity on Bitcoin Unlimited's Financial Decisions

Providing Some Clarity on Bitcoin Unlimited's Financial Decisions

https://preview.redd.it/zjps7jpg7rg41.jpg?width=1601&format=pjpg&auto=webp&s=defb61fb45c1a2ad5c7e31fe9200541783ba6478

Introduction

As promised in our previous article, we wanted to provide some extra clarity on Bitcoin Unlimited financial choices. We wanted to do this as there has been a lot of confusion and misinformation within the community as to the reasons behind these choices.
It has been claimed by a small number of influential people in the ecosystem that Bitcoin Unlimited does not support BCH (see the previous article debunking this claim) and that BU’s holdings are supposedly evidence of this. Background Bitcoin Unlimited was founded in 2015, and was set up as a response to the Bitcoin block size debate. More specifically, it was created to provide software that allowed on-chain scaling as originally proposed by Satoshi Nakamoto. As we all know, on-chain scaling is a vital component required for peer-to-peer electronic cash to serve the world’s population. Without it Bitcoin would be limited to serving only a small number of people willing and able to pay exorbitantly high fees. Our organisation was created to make Bitcoin unlimited. This prediction of high fees and limited capacity was played out in the BTC we know today as we predicted.
Bitcoin Unlimited received a large anonymous donation in BTC in 2016 from supporters of the ‘on-chain scaling’ movement. This donation allowed our organisation to remain independent and focussed on building software that allows on-chain scaling.
As you all know, in August of 2017, Bitcoin Cash was created after an unsuccessful multi-year effort to allow Bitcoin (BTC) to scale on-chain. Bitcoin Cash was created with the goal of on-chain scaling to support the world’s population right at its heart and BU has been supporting it since the idea was originally formulated.
Once Bitcoin Cash was created it also meant that all funds Bitcoin Unlimited held (BTC) were forked into two equal sets of coins, BTC and BCH. This put BU into a position where we had to make an important decision on how to handle these funds in a way that was in the interest of both BCH and BU.

Financial Prudence

Any organisation that wants to be effective in its goals must aim to always be financially sustainable. Without money, achieving anything becomes significantly more difficult. Cryptocurrencies only magnify this issue even further. Highly volatile asset values, opaque and dynamic tax and regulatory environments, and the unique properties of cryptocurrencies all contribute towards making the financial operations of an organisation an extreme challenge to say the least. Navigating this challenging landscape is a necessary requirement for the success of any organisation within our industry though.
While Bitcoin Unlimited’s primary goal is to make sure peer-to-peer electronic cash (as set out in the Bitcoin white-paper) becomes a reality, a secondary goal must be to make sure that it has the resources required to make its primary goal achievable, and an important part of these resources are its funds.
After Bitcoin forked into BTC and BCH, Bitcoin Unlimited then held an equal number of both. Although a BUIP was passed to authorize some extra conversion, significant practical obstacles to doing so exist (although this is still being worked on). However, since the overarching reason to convert a significant number of BTC to BCH is to maintain financial prudence based on the reasons outlined below and the poor BCH price performance has heavily skewed our holdings, we do anticipate some rebalancing when these obstacles are resolved.
We will further expand on these reasons below. Historic Volatility It is a fact that BCH has historically been more volatile than BTC. An organisation that wishes to maintain a lower level of risk must aim to hold a majority of funds in assets which will maintain their value over time, i.e. be less volatile in their price. It is unfortunately true that BCH has been a more volatile asset than BCH since its creation. While there has been lots of progress and maturation of the BCH ecosystem, this price volatility is likely due to BCH still being a smaller and less developed ecosystem than BTC. The graphs below show levels of volatility in the two coins compared.

BTC
BCH
This higher volatility in BCH has meant that to significantly increase BU’s holdings of BCH would expose the organisation to a higher level of risk for ideological reasons. BTC is already a high-volatility asset and to expose the organisation funds to even higher volatility and further risk is a decision that should not be taken based on simplistic ideology, but rather with the strategy of maximising the ability for the organisation to achieve its primary goals. This meant making the decision to not take on a higher exposure to price volatility, and instead maintain a more conservative risk profile.

Lack Of Say In The Protocol

One argument that has been put forward to suggest that this decision does not make sense because it is analogous to a CEO of a company holding more shares in their competitor’s company. This analogy does not accurately reflect the current scenario for BU or BCH. In this analogy BU is the CEO and BCH is the company. Ignoring the shareholders, A CEO is able to have the largest impact on a company compared to any other stakeholder. Their actions have a direct impact on operations of the company and therefore its value and the value of the shares.
Unfortunately, Bitcoin Unlimited currently has little to no input on the BCH protocol. It has no way to directly influence the direction or success of BCH. There are two reasons for this. Firstly, BCH has a mining software homogeneity that is as centralised as BTC (i.e. essentially all miners and pools run a single client, BitcoinABC). This means that, all though BU has a slight majority in non-mining and in-consensus nodes, BU has no say in protocol decisions unless a collaborative and decentralised development model were to be used by BitcoinABC. This is an unfortunate situation considering the fact that the community split from BTC for this very reason and is strongly in support of decentralised development. Secondly, BitcoinABC does not take a collaborative approach to development. All decisions and features are dictated by BitcoinABC.
In fact the situation is unfortunately even worse than this. BitcoinABC has decided to take an actively hostile position against Bitcoin Unlimited (and many other valuable participants in the ecosystem) and would rather that it did not exist at all.
While a number of members of BitcoinABC were previously members of BU, they unfortunately used their privilege as members to try (but fortunately failed) to sabotage the organisation.
https://www.bitcoinunlimited.info/voting/rendeproposal_vote_result/7eb0ded0487a6593ac3976b63422294e1a84b209be1307c46f373489922212a0
https://www.bitcoinunlimited.info/voting/rendeproposal_vote_result/6285fcef8fa44416b8e83f25bfebe79aff502c1446a7b60bfab28ec58c35b609
https://www.bitcoinunlimited.info/voting/rendeproposal_vote_result/b10f54ece2ea3b9001086ebdde0001fbef9dc2fd83729a65ba207c0f1d9dfceb
These three voting records show members of BitcoinABC voting for the purchase of BSV coin, voting for an unfeasibly large block size increase (10TB), and voting for implementation of and miner-activation of BSV features into the BU client. None of these actions were implemented in the ABC client, and the inclusion of BSV features is likely the single biggest criticism certain ABC affiliated people have made against BU, yet members of BitcoinABC voted for it.
While it is important to assume good faith, under no interpretation can this be seen as anything other an act of bad will towards BU. Unfortunately this kind of behaviour is rather the rule than the exception and has likely been a major factor in BCH’s struggle to attract quality developers into the ecosystem.
Regardless of the hard work done by members of BU to create useful software for Bitcoin Cash, and its continued commitment towards peer-to-peer electronic cash for the past 5 years, ABC will unfortunately never allow any of BU’s work to go into the BCH protocol willingly.
If BU were to invest all its funds into BCH it would be making a highly risky bet on BitcoinABC’s leadership, a leadership that has not only been historically unsuccessful (when looking at the price of BCH since its creation, both in dollar terms and BTC/BCH ratio terms), but also actively hostile to our organisation. A more cautious approach that takes these factors into account is to keep the funds held where there has been less volatility.
Regardless of all of this, BU is still 100% committed to supporting Bitcoin Cash.

Game Theory: The Strategy of Betting Against Yourself

Counter intuitively, a strategy where you bet against yourself can provide a beneficial low-risk profile. When you bet against yourself, if you lose you win and if you win you win. With BU’s current asset holdings of BCH and BTC the organisation is financially hedged in a way that it wins if BCH wins, and if BTC wins then BU lives to fight another day for worldwide peer-to-peer electronic cash.
If BTC goes down and BCH goes up then it means BCH is succeeding, and our funds in BCH will sustain us for longer. Not only that, but there would likely be more funds available for BCH development in this scenario. If BTC goes up and BCH goes down then BU will be sustained for longer to continue the fight for BCH and peer-to-peer electronic cash.
This is very similar to the strategy of BCH-supporting miners mining on BTC and then converting the BTC block rewards into BCH in an effort to use BTC gains to support BCH price. BU is similarly using its gains in BTC and converting them to efforts and initiatives in support of BCH. In doing so Bitcoin Unlimited is able to turn any BTC win into a positive for BCH.

Incentives

It has been suggested that the situation created by holding a larger portion of funds in BTC than in BCH creates negative incentives that push BU towards supporting BTC. It is important to keep in mind that Bitcoin Unlimited is not a profit driven organisation. While an increase in value of its assets is of course beneficial to the organisation, our primary goal is to accelerate the global adoption of peer-to-peer electronic cash as described in the Bitcoin white-paper, and the officials, membership and founding articles of Bitcoin Unlimited are the driving force for this.
It is also important to point out that there is no evidence to support the claim that BU is in support of BTC (or BSV). In fact the voting record clearly shows the opposite of this. BU has continually worked in support of peer-to-peer electronic cash, and specifically in support of BCH since it was created. This is thanks to the strong commitment by the BU officials and members, all of whom are long time Bitcoiners and supporters of the ‘on-chain scaling’ movement. The only members who receive any payment from the organisation are those who provide significant value in the form of various skilled services, and all of these are voted on by the membership. The BUIP record also shows that compensated individuals are often compensated at far under market rates for developers of their caliber. Should the price of BTC increase, no member receives any direct benefit from this beyond any appreciation in value of any BTC they privately hold. Therefore there are no strong incentives for BU to drive the price of BTC up and push the price of BCH down as this would be counter to our primary goal.

Has This Strategy Been Successful?

Bitcoin Unlimited and its members, all being long-time Bitcoiners, are acutely aware of the need to play the long game to make sure a globally adopted peer-to-peer electronic cash becomes a reality. BU is the oldest entity within the BCH ecosystem and with good reason. The financial strategy of BU to date has been highly effective in sustaining the organisation over a long period of time, and allowing it to independently support BCH development initiatives. This is made clear by the fact that BU continues to have enough funding to provide value to the BCH ecosystem for the foreseeable future.
Had BU converted all funds to BCH at, or at almost any point after, the time of the BCH/BTC fork in August 2017, then for much of the time since it would have been forced to either scale back operations or shut down support for BCH developers completely. We now see development teams such as BitcoinABC facing the prospect of being unable to fund their development of BCH, and their financial strategy may have contributed to this reality. This is despite the fact that nearly all the funds donated in the recent community funding drive sponsored by bitcoin.com were directed towards BitcoinABC.
Lack of a sustainable funding model also seems to have been a major factor in pushing BitcoinABC to make the highly controversial decision to support a change to the BCH protocol that would divert 12.5% of the block reward to themselves. Being financially prudent and sticking to its principles (as defined in the founding Articles of Federation has allowed Bitcoin Unlimited to steer clear of any conflicts of interest such as this.

Summary

Through its financial strategy Bitcoin Unlimited has been able to maintain its independence and financial sustainability and has therefore remained in a strong position to support Bitcoin Cash. BU’s officials and membership have continually made good decisions that have allowed BU to provide long-term support for the Bitcoin Cash ecosystem.
submitted by BU-BCH to btc [link] [comments]

Discussion- Rhetoric Surrounding Bitcoin & Bitcoin Cash in Relevant Subreddits?

Hi all,
This is just a general question to see what other redditors have to comment on this:
Has anyone else noticed a suspiciously similar pattern of rhetoric coming from heated debates between BTC/BCH?
From what I’ve gathered, posters and commenters in such debates use an excessive amount of “smiley faces”, consecutive exclamation points, meme templates, etc. To me, this is eerily similar to the type of rhetoric pouring from current political discussions.
Has anyone noticed any similar patterns?
Does anyone have any good guesses as to why this may be the case?
This is an honest question - just curious.
Thanks for reading.
submitted by mandlehandle to BitcoinMarkets [link] [comments]

Proof Of Work Explained

Proof Of Work Explained
https://preview.redd.it/hl80wdx61j451.png?width=1200&format=png&auto=webp&s=c80b21c53ae45c6f7d618f097bc705a1d8aaa88f
A proof-of-work (PoW) system (or protocol, or function) is a consensus mechanism that was first invented by Cynthia Dwork and Moni Naor as presented in a 1993 journal article. In 1999, it was officially adopted in a paper by Markus Jakobsson and Ari Juels and they named it as "proof of work".
It was developed as a way to prevent denial of service attacks and other service abuse (such as spam on a network). This is the most widely used consensus algorithm being used by many cryptocurrencies such as Bitcoin and Ethereum.
How does it work?
In this method, a group of users competes against each other to find the solution to a complex mathematical puzzle. Any user who successfully finds the solution would then broadcast the block to the network for verifications. Once the users verified the solution, the block then moves to confirm the state.
The blockchain network consists of numerous sets of decentralized nodes. These nodes act as admin or miners which are responsible for adding new blocks into the blockchain. The miner instantly and randomly selects a number which is combined with the data present in the block. To find a correct solution, the miners need to select a valid random number so that the newly generated block can be added to the main chain. It pays a reward to the miner node for finding the solution.
The block then passed through a hash function to generate output which matches all input/output criteria. Once the result is found, other nodes in the network verify and validate the outcome. Every new block holds the hash of the preceding block. This forms a chain of blocks. Together, they store information within the network. Changing a block requires a new block containing the same predecessor. It is almost impossible to regenerate all successors and change their data. This protects the blockchain from tampering.
What is Hash Function?
A hash function is a function that is used to map data of any length to some fixed-size values. The result or outcome of a hash function is known as hash values, hash codes, digests, or simply hashes.
https://preview.redd.it/011tfl8c1j451.png?width=851&format=png&auto=webp&s=ca9c2adecbc0b14129a9b2eea3c2f0fd596edd29
The hash method is quite secure, any slight change in input will result in a different output, which further results in discarded by network participants. The hash function generates the same length of output data to that of input data. It is a one-way function i.e the function cannot be reversed to get the original data back. One can only perform checks to validate the output data with the original data.
Implementations
Nowadays, Proof-of-Work is been used in a lot of cryptocurrencies. But it was first implemented in Bitcoin after which it becomes so popular that it was adopted by several other cryptocurrencies. Bitcoin uses the puzzle Hashcash, the complexity of a puzzle is based upon the total power of the network. On average, it took approximately 10 min to block formation. Litecoin, a Bitcoin-based cryptocurrency is having a similar system. Ethereum also implemented this same protocol.
Types of PoW
Proof-of-work protocols can be categorized into two parts:-
· Challenge-response
This protocol creates a direct link between the requester (client) and the provider (server).
In this method, the requester needs to find the solution to a challenge that the server has given. The solution is then validated by the provider for authentication.
The provider chooses the challenge on the spot. Hence, its difficulty can be adapted to its current load. If the challenge-response protocol has a known solution or is known to exist within a bounded search space, then the work on the requester side may be bounded.
https://preview.redd.it/ij967dof1j451.png?width=737&format=png&auto=webp&s=12670c2124fc27b0f988bb4a1daa66baf99b4e27
Source-wiki
· Solution–verification
These protocols do not have any such prior link between the sender and the receiver. The client, self-imposed a problem and solve it. It then sends the solution to the server to check both the problem choice and the outcome. Like Hashcash these schemes are also based on unbounded probabilistic iterative procedures.
https://preview.redd.it/gfobj9xg1j451.png?width=740&format=png&auto=webp&s=2291fd6b87e84395f8a4364267f16f577b5f1832
Source-wiki
These two methods generally based on the following three techniques:-
CPU-bound
This technique depends upon the speed of the processor. The higher the processor power greater will be the computation.
Memory-bound
This technique utilizes the main memory accesses (either latency or bandwidth) in computation speed.
Network-bound
In this technique, the client must perform a few computations and wait to receive some tokens from remote servers.
List of proof-of-work functions
Here is a list of known proof-of-work functions:-
o Integer square root modulo a large prime
o Weaken Fiat–Shamir signatures`2
o Ong–Schnorr–Shamir signature is broken by Pollard
o Partial hash inversion
o Hash sequences
o Puzzles
o Diffie–Hellman–based puzzle
o Moderate
o Mbound
o Hokkaido
o Cuckoo Cycle
o Merkle tree-based
o Guided tour puzzle protocol
A successful attack on a blockchain network requires a lot of computational power and a lot of time to do the calculations. Proof of Work makes hacks inefficient since the cost incurred would be greater than the potential rewards for attacking the network. Miners are also incentivized not to cheat.
It is still considered as one of the most popular methods of reaching consensus in blockchains. Though it may not be the most efficient solution due to high energy extensive usage. But this is why it guarantees the security of the network.
Due to Proof of work, it is quite impossible to alter any aspect of the blockchain, since any such changes would require re-mining all those subsequent blocks. It is also difficult for a user to take control over the network computing power since the process requires high energy thus making these hash functions expensive.
submitted by RumaDas to u/RumaDas [link] [comments]

Building Ergo: SPV security

There’s often a tension in the crypto world between security and convenience. That trade-off is unacceptable if we want these technologies to be widely used. Here’s how Ergo addresses one common and very important issue.
We all know that the most secure way to use Bitcoin, or any crypto, is to download a copy of the blockchain and run a full node yourself. That way, every time you or anyone else makes a transaction, your client checks the blockchain to ensure it’s valid. You don’t have to trust anyone else.
A full Bitcoin node checks all the blocks in the blockchain (using headers) and makes sure there are no fraudulent transactions. It’s a very secure way of using crypto – but there’s a problem. It requires significant bandwidth, storage and processing power. That kind of commodity hardware is expensive, and using a full node to validate and make transactions is in any case unsuitable for mobile devices. This is particularly true for Bitcoin, where the blockchain is over 270 GB and counting.
SPV
Simplified Payment Verification (SPV) is designed to address this problem, as described in the Bitcoin white paper:
Satoshi notes that this is not a perfect solution, and is vulnerable to an attacker overpowering the network and fooling SPV users.
Moreover, while SPV mode is intended for resource-limited devices, even this ‘lite’ approach is not always feasible. Ethereum’s headers alone total around 5 GB to download. Thus Ethereum mobile clients do not validate chain validity and so blindly have to trust third parties.
There are proposals to reduce the requirements for SPV mode by checking just a few random headers, instead of all of them. But it’s hard to do that securely.
Efficient SPV
Several years have been spent researching and developing secure protocols that allow for efficient SPV clients. The two best-known and most reliable protocols are NiPoPoWs and FlyClient.
Ergo implements NiPoPoWs, or Non-interactive Proof-of-Proof-of-Work. This technology can be explored in full on this dedicated website: https://nipopows.com:
This enables us to build a mobile SPV client that requires around just 100KB of block headers to be downloaded.
A super-efficient Ergo wallet with SPV security is in development, so stay tuned for more updates!
Share post:
Facebook
Twitter
Ergoplatform.org
submitted by kushti to ergoplatformorg [link] [comments]

Building Ergo: SPV security

There’s often a tension in the crypto world between security and convenience. That trade-off is unacceptable if we want these technologies to be widely used. Here’s how Ergo addresses one common and very important issue.
We all know that the most secure way to use Bitcoin, or any crypto, is to download a copy of the blockchain and run a full node yourself. That way, every time you or anyone else makes a transaction, your client checks the blockchain to ensure it’s valid. You don’t have to trust anyone else.
A full Bitcoin node checks all the blocks in the blockchain (using headers) and makes sure there are no fraudulent transactions. It’s a very secure way of using crypto – but there’s a problem. It requires significant bandwidth, storage and processing power. That kind of commodity hardware is expensive, and using a full node to validate and make transactions is in any case unsuitable for mobile devices. This is particularly true for Bitcoin, where the blockchain is over 270 GB and counting.
SPV
Simplified Payment Verification (SPV) is designed to address this problem, as described in the Bitcoin white paper:
Satoshi notes that this is not a perfect solution, and is vulnerable to an attacker overpowering the network and fooling SPV users.
Moreover, while SPV mode is intended for resource-limited devices, even this ‘lite’ approach is not always feasible. Ethereum’s headers alone total around 5 GB to download. Thus Ethereum mobile clients do not validate chain validity and so blindly have to trust third parties.
There are proposals to reduce the requirements for SPV mode by checking just a few random headers, instead of all of them. But it’s hard to do that securely.
Efficient SPV
Several years have been spent researching and developing secure protocols that allow for efficient SPV clients. The two best-known and most reliable protocols are NiPoPoWs and FlyClient.
Ergo implements NiPoPoWs, or Non-interactive Proof-of-Proof-of-Work. This technology can be explored in full on this dedicated website: https://nipopows.com:
This enables us to build a mobile SPV client that requires around just 100KB of block headers to be downloaded.
A super-efficient Ergo wallet with SPV security is in development, so stay tuned for more updates!
submitted by eleanorcwhite to btc [link] [comments]

Building Ergo: SPV security

There’s often a tension in the crypto world between security and convenience. That trade-off is unacceptable if we want these technologies to be widely used. Here’s how Ergo addresses one common and very important issue.
We all know that the most secure way to use Bitcoin, or any crypto, is to download a copy of the blockchain and run a full node yourself. That way, every time you or anyone else makes a transaction, your client checks the blockchain to ensure it’s valid. You don’t have to trust anyone else.
A full Bitcoin node checks all the blocks in the blockchain (using headers) and makes sure there are no fraudulent transactions. It’s a very secure way of using crypto – but there’s a problem. It requires significant bandwidth, storage and processing power. That kind of commodity hardware is expensive, and using a full node to validate and make transactions is in any case unsuitable for mobile devices. This is particularly true for Bitcoin, where the blockchain is over 270 GB and counting.
SPV
Simplified Payment Verification (SPV) is designed to address this problem, as described in the Bitcoin white paper:
Satoshi notes that this is not a perfect solution, and is vulnerable to an attacker overpowering the network and fooling SPV users.
Moreover, while SPV mode is intended for resource-limited devices, even this ‘lite’ approach is not always feasible. Ethereum’s headers alone total around 5 GB to download. Thus Ethereum mobile clients do not validate chain validity and so blindly have to trust third parties.
There are proposals to reduce the requirements for SPV mode by checking just a few random headers, instead of all of them. But it’s hard to do that securely.
Efficient SPV
Several years have been spent researching and developing secure protocols that allow for efficient SPV clients. The two best-known and most reliable protocols are NiPoPoWs and FlyClient.
Ergo implements NiPoPoWs, or Non-interactive Proof-of-Proof-of-Work. This technology can be explored in full on this dedicated website: https://nipopows.com:
This enables us to build a mobile SPV client that requires around just 100KB of block headers to be downloaded.
A super-efficient Ergo wallet with SPV security is in development, so stay tuned for more updates!
submitted by eleanorcwhite to btc [link] [comments]

Building Ergo: SPV security

There’s often a tension in the crypto world between security and convenience. That trade-off is unacceptable if we want these technologies to be widely used. Here’s how Ergo addresses one common and very important issue.
We all know that the most secure way to use Bitcoin, or any crypto, is to download a copy of the blockchain and run a full node yourself. That way, every time you or anyone else makes a transaction, your client checks the blockchain to ensure it’s valid. You don’t have to trust anyone else.
A full Bitcoin node checks all the blocks in the blockchain (using headers) and makes sure there are no fraudulent transactions. It’s a very secure way of using crypto – but there’s a problem. It requires significant bandwidth, storage and processing power. That kind of commodity hardware is expensive, and using a full node to validate and make transactions is in any case unsuitable for mobile devices. This is particularly true for Bitcoin, where the blockchain is over 270 GB and counting.
SPV
Simplified Payment Verification (SPV) is designed to address this problem, as described in the Bitcoin white paper:
Satoshi notes that this is not a perfect solution, and is vulnerable to an attacker overpowering the network and fooling SPV users.
Moreover, while SPV mode is intended for resource-limited devices, even this ‘lite’ approach is not always feasible. Ethereum’s headers alone total around 5 GB to download. Thus Ethereum mobile clients do not validate chain validity and so blindly have to trust third parties.
There are proposals to reduce the requirements for SPV mode by checking just a few random headers, instead of all of them. But it’s hard to do that securely.
Efficient SPV
Several years have been spent researching and developing secure protocols that allow for efficient SPV clients. The two best-known and most reliable protocols are NiPoPoWs and FlyClient.
Ergo implements NiPoPoWs, or Non-interactive Proof-of-Proof-of-Work. This technology can be explored in full on this dedicated website: https://nipopows.com:
This enables us to build a mobile SPV client that requires around just 100KB of block headers to be downloaded.
A super-efficient Ergo wallet with SPV security is in development, so stay tuned for more updates!
submitted by eleanorcwhite to CryptoMarkets [link] [comments]

What is Bitcoin Classic? I manipulated the blockchain to go to 20MB - Top 5 r/Bitcoin News crypto Eri - YouTube The Bitcoin and Blockchain Technology Explained Consensus in Blockchain

The most popular and trusted block explorer and crypto transaction search engine. Size. Height. 640030. Mined. 15 minutes. Miner. AntPool. Size. 1,274,484 bytes. Height. 640029. Mined. 25 minutes. Miner. AntPool. Buying crypto like Bitcoin and Ether is as easy as verifying your identity, adding a payment and clicking "Buy". • 80 bytes * #blocks (Bitcoin) • 508 bytes * #blocks (Ethereum) • Sufficient for sidechains and swaps • Can’t verify all transactions • Grows with #blocks • Less block time-> larger SPV client • 40 MB in Bitcoin • 2.2 GB in Ethereum • Especially bad for multi-chain clients Bitcoin Core initial synchronization will take time and download a lot of data. You should make sure that you have enough bandwidth and storage for the full block chain size (over 200GB). If you have a good Internet connection, you can help strengthen the network by keeping your PC running with Bitcoin Core and port 8333 open. The size of the Bitcoin blockchain has experienced consistently high levels of growth since its creation, reaching approximately 269.82 gigabytes in size as of the end of March 2020. Bitcoin Core GUI will begin to download the block chain. This step will take at least several days, and it may take much more time on a slow Internet connection or with a slow computer. During the download, Bitcoin Core will use a significant part of your connection bandwidth.

[index] [7235] [13736] [37] [9954] [11573] [6374] [11186] [3814] [1766] [1424]

What is Bitcoin Classic?

You have Bitcoin ABC with lead dev Amaury Sechet proposing new Op codes and canonical transaction ordering, while nChain (Craig Wright) and CoinGeek (Calvin Ayre) proposing a different client ... But how does bitcoin actually work? - Duration: 26:21. 3Blue1Brown ... How transactions are verified in Bitcoin Blockchain - Longest chain rule explained - Duration: 5:08. FINMAESTRO ... Bitcoin nodes use the block chain to distinguish legitimate Bitcoin transactions from attempts to re-spend coins that have already been spent elsewhere. #bitcoin #mining #bitcoinmining. We briefly cover the bitcoin block size debate, with a call to support Bitcoin Classic. ... Block chain technology - Duration: 5:15. GO-Science 254,098 views. 5:15. In early 2013, it became a common belief that new Bitcoin users should not be recommended Bitcoin-QT, the full node client. Bitcoin.org was changed to no longer exclusively recommend it. Two years ...